

treq: High-level Twisted HTTP Client API

Release v21.1.0 (What’s new?).

treq [https://pypi.org/project/treq] depends on a recent Twisted and functions on Python 2.7 and Python 3.3+ (including PyPy).

Why?

requests [https://requests.readthedocs.io/en/master/] by Kenneth Reitz is a wonderful library.
I want the same ease of use when writing Twisted applications.
treq is not of course a perfect clone of requests [https://requests.readthedocs.io/en/master/].
I have tried to stay true to the do-what-I-mean spirit of the requests [https://requests.readthedocs.io/en/master/] API and also kept the API familiar to users of Twisted [https://twistedmatrix.com/] and twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] on which treq is based.

Quick Start

Installation

$ pip install treq

GET

def main(reactor, *args):
 d = treq.get('https://httpbin.org/get')
 d.addCallback(print_response)
 return d

Full example: basic_get.py

POST

def main(reactor):
 d = treq.post("https://httpbin.org/post",
 data={"form": "data"})
 d.addCallback(print_response)
 return d

Full example: basic_post.py

Why not 100% requests-alike?

Initially when I started off working on treq I thought the API should look exactly like requests [https://requests.readthedocs.io/en/master/] except anything that would involve the network would return a Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

Over time while attempting to mimic the requests [https://requests.readthedocs.io/en/master/] API it became clear that not enough code could be shared between requests [https://requests.readthedocs.io/en/master/] and treq for it to be worth the effort to translate many of the usage patterns from requests [https://requests.readthedocs.io/en/master/].

With the current version of treq I have tried to keep the API simple, yet remain familiar to users of Twisted and its lower-level HTTP libraries.

Feature Parity with Requests

Even though mimicking the requests [https://requests.readthedocs.io/en/master/] API is not a goal, supporting most of its features is.
Here is a list of requests [https://requests.readthedocs.io/en/master/] features and their status in treq.

	
	requests

	treq

	International Domains and URLs

	yes

	yes

	Keep-Alive & Connection Pooling

	yes

	yes

	Sessions with Cookie Persistence

	yes

	yes

	Browser-style SSL Verification

	yes

	yes

	Basic Authentication

	yes

	yes

	Digest Authentication

	yes

	no

	Elegant Key/Value Cookies

	yes

	yes

	Automatic Decompression

	yes

	yes

	Unicode Response Bodies

	yes

	yes

	Multipart File Uploads

	yes

	yes

	Connection Timeouts

	yes

	yes

	HTTP(S) Proxy Suport

	yes

	no

	.netrc support

	yes

	no

	Python 2.7

	yes

	yes

	Python 3.x

	yes

	yes

Table of Contents

	Use Cases
	Handling Streaming Responses

	URLs, URIs, and Hyperlinks

	Query Parameters

	JSON

	Auth

	Redirects

	Cookies

	Customizing the Twisted Agent

	Testing Helpers
	Writing tests for HTTP clients
	Loosely matching the request

	Writing tests for Twisted Web resources

	API Reference
	Making Requests

	Accessing Content

	The HTTP Client
	Augmented Response Objects

	Authentication

	Test Helpers
	StubTreq Objects

	RequestTraversalAgent Objects

	RequestSequence Objects

	StringStubbingResource Objects

	HasHeaders Objects

	MultiPartProducer Objects

	Changelog
	21.1.0 (2021-01-14)
	Features

	Bugfixes

	Improved Documentation

	Deprecations and Removals

	20.9.0 (2020-09-27)
	Features

	Improved Documentation

	20.4.1 (2020-04-16)
	Bugfixes

	20.4.0 (2020-04-16)
	Features

	Bugfixes

	Improved Documentation

	20.3.0 (2020-03-15)
	Features

	Bugfixes

	Improved Documentation

	Deprecations and Removals

	Misc

Indices and tables

	Index

	Module Index

	Search Page

Use Cases

Handling Streaming Responses

In addition to receiving responses [https://twistedmatrix.com/documents/current/web/howto/client.html#receiving-responses]
with IResponse.deliverBody(), treq provides a helper function
treq.collect() which takes a
response and a single argument function which will be called with all new
data available from the response. Much like IProtocol.dataReceived(),
treq.collect() knows nothing about the framing of your data and will
simply call your collector function with any data that is currently available.

Here is an example which simply a file object’s write method to
treq.collect() to save the response body to a file.

	1
2
3
4
5
6

	def download_file(reactor, url, destination_filename):
 destination = open(destination_filename, 'wb')
 d = treq.get(url, unbuffered=True)
 d.addCallback(treq.collect, destination.write)
 d.addBoth(lambda _: destination.close())
 return d

Full example: download_file.py

URLs, URIs, and Hyperlinks

The url argument to HTTPClient.request() accepts three URL representations:

	High-level: hyperlink.DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL]

	Mid-level str [https://docs.python.org/3/library/stdtypes.html#str] (unicode on Python 2)

	Low-level: ASCII bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or hyperlink.URL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.URL]

The high-level DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL] form is useful when programatically generating URLs.
Here is an example that builds a URL that contains a & character, which is automatically escaped properly.

	1
2
3
4
5
6
7
8

	def main(reactor):
 url = (
 DecodedURL.from_text(u"https://httpbin.org")
 .child(u"get") # add path /get
 .add(u"foo", u"&") # add query ?foo=%26
)
 print(url.to_text())
 return treq.get(url).addCallback(print_response)

Full example: basic_url.py

Query Parameters

treq.HTTPClient.request() supports a params keyword argument which will
be URL-encoded and added to the url argument in addition to any query
parameters that may already exist.

The params argument may be either a dict or a list of
(key, value) tuples.

If it is a dict then the values in the dict may either be scalar values or a list or tuple thereof.
Scalar values means str, bytes, or anything else — even None — which will be coerced to str.
Strings are UTF-8 encoded.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	@inlineCallbacks
def main(reactor):
 print('List of tuples')
 resp = yield treq.get('https://httpbin.org/get',
 params=[('foo', 'bar'), ('baz', 'bax')])
 content = yield resp.text()
 print(content)

 print('Single value dictionary')
 resp = yield treq.get('https://httpbin.org/get',
 params={'foo': 'bar', 'baz': 'bax'})
 content = yield resp.text()
 print(content)

 print('Multi value dictionary')
 resp = yield treq.get('https://httpbin.org/get',
 params={b'foo': [b'bar', b'baz', b'bax']})
 content = yield resp.text()
 print(content)

 print('Mixed value dictionary')
 resp = yield treq.get('https://httpbin.org/get',
 params={'foo': [1, 2, 3], 'bax': b'quux', b'bar': 'foo'})
 content = yield resp.text()
 print(content)

 print('Preserved query parameters')
 resp = yield treq.get('https://httpbin.org/get?foo=bar',
 params={'baz': 'bax'})
 content = yield resp.text()
 print(content)

Full example: query_params.py

If you prefer a strictly-typed API, try hyperlink.DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL].
Use its add() [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.URL.add] and set() [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.URL.set] methods to add query parameters without risk of accidental type coercion.

JSON

HTTPClient.request() supports a json keyword argument that gives a data structure to serialize as JSON (using json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]).
This also implies a Content-Type: application/json request header.
The json parameter is mutually-exclusive with data.

The _Response.json() method decodes a JSON response body.
It buffers the whole response and decodes it with json.loads() [https://docs.python.org/3/library/json.html#json.loads].

	1
2
3
4
5
6
7
8

	@defer.inlineCallbacks
def main(reactor):
 response = yield treq.post(
 'https://httpbin.org/post',
 json={"msg": "Hello!"},
)
 data = yield response.json()
 pprint(data)

Full example: json_post.py

Auth

HTTP Basic authentication as specified in RFC 2617 [https://tools.ietf.org/html/rfc2617.html] is easily supported by
passing an auth keyword argument to any of the request functions.

The auth argument should be a tuple of the form ('username', 'password').

	1
2
3
4
5
6
7
8
9

	def main(reactor, *args):
 d = treq.get(
 'https://httpbin.org/basic-auth/treq/treq',
 auth=('treq', 'treq')
)
 d.addCallback(print_response)
 return d

react(main, [])

Full example: basic_auth.py

Redirects

treq handles redirects by default.

The following will print a 200 OK response.

	1
2
3
4
5
6

	def main(reactor, *args):
 d = treq.get('https://httpbin.org/redirect/1')
 d.addCallback(print_response)
 return d

react(main, [])

Full example: redirects.py

You can easily disable redirects by simply passing allow_redirects=False to
any of the request methods.

	1
2
3
4
5
6

	def main(reactor, *args):
 d = treq.get('https://httpbin.org/redirect/1', allow_redirects=False)
 d.addCallback(print_response)
 return d

react(main, [])

Full example: disable_redirects.py

You can even access the complete history of treq response objects by calling
the history() method on the response.

	1
2
3
4
5
6
7
8
9

	def main(reactor, *args):
 d = treq.get('https://httpbin.org/redirect/1')

 def cb(response):
 print('Response history:')
 print(response.history())
 return print_response(response)

 d.addCallback(cb)

Full example: response_history.py

Cookies

Cookies can be set by passing a dict or cookielib.CookieJar instance
via the cookies keyword argument. Later cookies set by the server can be
retrieved using the cookies() method of the response.

The object returned by cookies() supports the same key/value
access as requests cookies [https://requests.readthedocs.io/en/latest/user/quickstart/#cookies].

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	def main(reactor, *args):
 d = treq.get('https://httpbin.org/cookies/set?hello=world')

 def _get_jar(resp):
 jar = resp.cookies()

 print('The server set our hello cookie to: {}'.format(jar['hello']))

 return treq.get('https://httpbin.org/cookies', cookies=jar)

 d.addCallback(_get_jar)
 d.addCallback(print_response)

 return d

Full example: using_cookies.py

Customizing the Twisted Agent

The main treq module has helper functions that automatically instantiate
an instance of treq.client.HTTPClient. You can create an instance
of HTTPClient directly in order to customize the
paramaters used to initialize it.
Internally, the HTTPClient wraps an instance of
twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html]. When you create an instance of
HTTPClient, you must initialize it with an instance of
Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html]. This allows you to customize its
behavior.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	def make_custom_agent(reactor):
 return Agent(reactor, connectTimeout=42)

def main(reactor, *args):
 agent = make_custom_agent(reactor)
 http_client = HTTPClient(agent)
 d = http_client.get(
 'https://secure.example.net/area51',
 auth=('admin', "you'll never guess!"))
 d.addCallback(print_response)
 return d

react(main, [])

Full example: custom_agent.py

Testing Helpers

The treq.testing module provides some tools for testing both HTTP clients which use the treq API and implementations of the Twisted Web resource model [https://twistedmatrix.com/documents/current/api/twisted.web.resource.IResource.html].

Writing tests for HTTP clients

The StubTreq class implements the treq module interface (treq.get(), treq.post(), etc.) but runs all I/O via a MemoryReactor [https://twistedmatrix.com/documents/current/api/twisted.internet.testing.MemoryReactor.html].
It wraps a twisted.web.resource.IResource [https://twistedmatrix.com/documents/current/api/twisted.web.resource.IResource.html] provider which handles each request.

You can wrap a pre-existing IResource provider, or write your own.
For example, the twisted.web.resource.ErrorPage [https://twistedmatrix.com/documents/current/api/twisted.web.resource.ErrorPage.html] resource can produce an arbitrary HTTP status code.
twisted.web.static.File [https://twistedmatrix.com/documents/current/api/twisted.web.static.File.html] can serve files or directories.
And you can easily achieve custom responses by writing trivial resources yourself:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@implementer(IResource)
class JsonResource(object):
 isLeaf = True # NB: means getChildWithDefault will not be called

 def __init__(self, data):
 self.data = data

 def render(self, request):
 request.setHeader(b'Content-Type', b'application/json')
 return json.dumps(self.data).encode('utf-8')

However, those resources don’t assert anything about the request.
The RequestSequence and StringStubbingResource classes make it easy to construct a resource which encodes the expected request and response pairs.
Do note that most parameters to these functions must be bytes—it’s safest to use the b'' string syntax, which works on both Python 2 and 3.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	from twisted.internet import defer
from twisted.trial.unittest import SynchronousTestCase
from twisted.web import http

from treq.testing import StubTreq, HasHeaders
from treq.testing import RequestSequence, StringStubbingResource

@defer.inlineCallbacks
def make_a_request(treq):
 """
 Make a request using treq.
 """
 response = yield treq.get('http://an.example/foo', params={'a': 'b'},
 headers={b'Accept': b'application/json'})
 if response.code == http.OK:
 result = yield response.json()
 else:
 message = yield response.text()
 raise Exception("Got an error from the server: {}".format(message))
 defer.returnValue(result)

class MakeARequestTests(SynchronousTestCase):
 """
 Test :func:`make_a_request()` using :mod:`treq.testing.RequestSequence`.
 """

 def test_200_ok(self):
 """On a 200 response, return the response's JSON."""
 req_seq = RequestSequence([
 ((b'get', 'http://an.example/foo', {b'a': [b'b']},
 HasHeaders({'Accept': ['application/json']}), b''),
 (http.OK, {b'Content-Type': b'application/json'}, b'{"status": "ok"}'))
])
 treq = StubTreq(StringStubbingResource(req_seq))

 with req_seq.consume(self.fail):
 result = self.successResultOf(make_a_request(treq))

 self.assertEqual({"status": "ok"}, result)

 def test_418_teapot(self):
 """On an unexpected response code, raise an exception"""
 req_seq = RequestSequence([
 ((b'get', 'http://an.example/foo', {b'a': [b'b']},
 HasHeaders({'Accept': ['application/json']}), b''),
 (418, {b'Content-Type': b'text/plain'}, b"I'm a teapot!"))
])
 treq = StubTreq(StringStubbingResource(req_seq))

 with req_seq.consume(self.fail):
 failure = self.failureResultOf(make_a_request(treq))

 self.assertEqual(u"Got an error from the server: I'm a teapot!",
 failure.getErrorMessage())

This may be run with trial testing_seq.py.
Download: testing_seq.py.

Loosely matching the request

If you don’t care about certain parts of the request, you can pass mock.ANY, which compares equal to anything.
This sequence matches a single GET request with any parameters or headers:

RequestSequence([
 ((b'get', mock.ANY, mock.ANY, b''), (200, {}, b'ok'))
])

If you care about headers, use HasHeaders to make assertions about the headers present in the request.
It compares equal to a superset of the headers specified, which helps make your test robust to changes in treq or Agent.
Right now treq adds the Accept-Encoding: gzip header, but as support for additional compression methods is added, this may change.

Writing tests for Twisted Web resources

Since StubTreq wraps any resource, you can use it to test your server-side code as well.
This is superior to calling your resource’s methods directly or passing mock objects, since it uses a real Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] to generate the request and a real Site [https://twistedmatrix.com/documents/current/api/twisted.web.server.Site.html] to process the response.
Thus, the request object your code interacts with is a real twisted.web.server.Request [https://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html] and behaves the same as it would in production.

Note that if your resource returns NOT_DONE_YET you must keep a reference to the RequestTraversalAgent and call its flush() method to spin the memory reactor once the server writes additional data before the client will receive it.

API Reference

This page lists all of the interfaces exposed by the treq package.

Making Requests

The treq module provides several convenience functions for making requests.
These functions all create a default treq.client.HTTPClient instance and pass their arguments to the appropriate HTTPClient method.

	
treq.request(method, url, **kwargs)[source]

	Make an HTTP request.

	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – HTTP method. Example: 'GET', 'HEAD'. 'PUT',
'POST'.

	url (hyperlink.DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL], str, bytes, or
hyperlink.EncodedURL) – http or https URL, which may include query arguments.

	headers (Headers or None [https://docs.python.org/3/library/constants.html#None]) – Optional HTTP Headers to send with this request.

	params (dict w/ str or list/tuple of str values, list of 2-tuples, or
None.) – Optional parameters to be append as the query string to
the URL, any query string parameters in the URL already will be
preserved.

	data (str [https://docs.python.org/3/library/stdtypes.html#str], file-like, IBodyProducer, or None [https://docs.python.org/3/library/constants.html#None]) – Optional request body.

	json (dict [https://docs.python.org/3/library/stdtypes.html#dict], list/tuple, int [https://docs.python.org/3/library/functions.html#int], string/unicode, bool [https://docs.python.org/3/library/functions.html#bool], or None [https://docs.python.org/3/library/constants.html#None]) – Optional JSON-serializable content to pass in body.

	reactor – Optional twisted reactor.

	persistent (bool [https://docs.python.org/3/library/functions.html#bool]) – Use persistent HTTP connections. Default: True

	allow_redirects (bool [https://docs.python.org/3/library/functions.html#bool]) – Follow HTTP redirects. Default: True

	auth (tuple of ('username', 'password').) – HTTP Basic Authentication information — see
treq.auth.add_auth().

	cookies (dict or cookielib.CookieJar) – Cookies to send with this request. The HTTP kind, not the
tasty kind.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Request timeout seconds. If a response is not
received within this timeframe, a connection is aborted with
CancelledError.

	browser_like_redirects (bool [https://docs.python.org/3/library/functions.html#bool]) – Use browser like redirects
(i.e. Ignore RFC2616 section 10.3 and follow redirects from
POST requests). Default: False

	unbuffered (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True to to disable response buffering. By
default treq buffers the entire response body in memory.

	agent (twisted.web.iweb.IAgent [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgent.html]) – Provide your own custom agent. Use this to override things
like connectTimeout or BrowserLikePolicyForHTTPS. By
default, treq will create its own Agent with reasonable
defaults.

	Return type

	Deferred that fires with an IResponse provider.

Changed in version treq: 20.9.0

The url param now accepts hyperlink.DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL] and
hyperlink.EncodedURL objects.

	
treq.get(url, headers=None, **kwargs)[source]

	Make a GET request.

See treq.request()

	
treq.head(url, **kwargs)[source]

	Make a HEAD request.

See treq.request()

	
treq.post(url, data=None, **kwargs)[source]

	Make a POST request.

See treq.request()

	
treq.put(url, data=None, **kwargs)[source]

	Make a PUT request.

See treq.request()

	
treq.patch(url, data=None, **kwargs)[source]

	Make a PATCH request.

See treq.request()

	
treq.delete(url, **kwargs)[source]

	Make a DELETE request.

See treq.request()

Accessing Content

	
treq.collect(response, collector)[source]

	Incrementally collect the body of the response.

This function may only be called once for a given response.

	Parameters

	
	response (IResponse) – The HTTP response to collect the body from.

	collector (single argument callable) – A callable to be called each time data is available
from the response body.

	Return type

	Deferred that fires with None when the entire body has been read.

	
treq.content(response)[source]

	Read the contents of an HTTP response.

This function may be called multiple times for a response, it uses a
WeakKeyDictionary to cache the contents of the response.

	Parameters

	response (IResponse) – The HTTP Response to get the contents of.

	Return type

	Deferred that fires with the content as a str.

	
treq.text_content(response, encoding='ISO-8859-1')[source]

	Read the contents of an HTTP response and decode it with an appropriate
charset, which may be guessed from the Content-Type header.

	Parameters

	
	response (IResponse) – The HTTP Response to get the contents of.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – A charset, such as UTF-8 or ISO-8859-1,
used if the response does not specify an encoding.

	Return type

	Deferred that fires with a unicode string.

	
treq.json_content(response, **kwargs)[source]

	Read the contents of an HTTP response and attempt to decode it as JSON.

This function relies on content() and so may be called more than
once for a given response.

	Parameters

	
	response (IResponse) – The HTTP Response to get the contents of.

	kwargs – Any keyword arguments accepted by json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	Return type

	Deferred that fires with the decoded JSON.

The HTTP Client

treq.client.HTTPClient has methods that match the signatures of the convenience request functions in the treq module.

	
class treq.client.HTTPClient(agent, cookiejar=None, data_to_body_producer=IBodyProducer)[source]

	
	
request(method, url, **kwargs)[source]

	See treq.request().

	
get(url, **kwargs)[source]

	See treq.get().

	
head(url, **kwargs)[source]

	See treq.head().

	
post(url, data=None, **kwargs)[source]

	See treq.post().

	
put(url, data=None, **kwargs)[source]

	See treq.put().

	
patch(url, data=None, **kwargs)[source]

	See treq.patch().

	
delete(url, **kwargs)[source]

	See treq.delete().

Augmented Response Objects

treq.request(), treq.get(), etc. return an object which provides twisted.web.iweb.IResponse [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html], plus a few additional convenience methods:

	
class treq.response._Response[source]

	
	
collect(collector)[source]

	Incrementally collect the body of the response, per
treq.collect().

	Parameters

	collector – A single argument callable that will be called
with chunks of body data as it is received.

	Returns

	A Deferred that fires when the entire body has been
received.

	
content()[source]

	Read the entire body all at once, per treq.content().

	Returns

	A Deferred that fires with a bytes object when the entire
body has been received.

	
json(**kwargs)[source]

	Collect the response body as JSON per treq.json_content().

	Parameters

	kwargs – Any keyword arguments accepted by json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	Return type

	Deferred that fires with the decoded JSON when the entire body
has been read.

	
text(encoding='ISO-8859-1')[source]

	Read the entire body all at once as text, per
treq.text_content().

	Return type

	A Deferred that fires with a unicode string when the entire
body has been received.

	
history()[source]

	Get a list of all responses that (such as intermediate redirects),
that ultimately ended in the current response. The responses are
ordered chronologically.

	Returns

	A list of _Response objects

	
cookies()[source]

	Get a copy of this response’s cookies.

	Return type

	requests.cookies.RequestsCookieJar

Inherited from twisted.web.iweb.IResponse [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html]:

	Variables

	
	version – See IResponse.version [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#version]

	code [https://docs.python.org/3/library/code.html#module-code] – See IResponse.code [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#code]

	phrase – See IResponse.phrase [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#phrase]

	headers – See IResponse.headers [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#headers]

	length – See IResponse.length [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#length]

	request – See IResponse.request [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#request]

	previousResponse – See IResponse.previousResponse [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#previousResponse]

	
deliverBody(protocol)

	See IResponse.deliverBody() [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#deliverBody]

	
setPreviousResponse(response)

	See IResponse.setPreviousResponse() [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html#setPreviousResponse]

Authentication

	
treq.auth.add_auth(agent, auth_config)[source]

	Wrap an agent to perform authentication

	Parameters

	
	agent – Agent to wrap.

	auth_config – A ('username', 'password') tuple — see add_basic_auth().

	Returns

	IAgent [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgent.html]

	Raises

	UnknownAuthConfig – When the format auth_config isn’t supported.

	
treq.auth.add_basic_auth(agent, username, password)[source]

	Wrap an agent to add HTTP basic authentication

The returned agent sets the Authorization request header according to the
basic authentication scheme described in RFC 7617 [https://tools.ietf.org/html/rfc7617.html]. This header contains
the given username and password in plaintext, and thus should only be
used over an encrypted transport (HTTPS).

Note that the colon (:) is used as a delimiter between the username
and password, so if either parameter includes a colon the interpretation
of the Authorization header is server-defined.

	Parameters

	
	agent – Agent to wrap.

	username – The username.

	password – The password.

	Returns

	IAgent [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgent.html]

	
exception treq.auth.UnknownAuthConfig(config)[source]

	The authentication config provided couldn’t be interpreted.

Test Helpers

The treq.testing module contains tools for in-memory testing of HTTP clients and servers.

StubTreq Objects

	
class treq.testing.StubTreq(resource)

	StubTreq implements the same interface as the treq module
or the HTTPClient class, with the limitation that it
does not support the files argument.

	
flush()

	Flush all data between pending client/server pairs.

This is only necessary if a Resource under test returns
NOT_DONE_YET from its render method, making a response
asynchronous. In that case, after each write from the server,
flush() must be called so the client can see it.

As the methods on treq.client.HTTPClient:

	
request()

	See treq.request().

	
get()

	See treq.get().

	
head()

	See treq.head().

	
post()

	See treq.post().

	
put()

	See treq.put().

	
patch()

	See treq.patch().

	
delete()

	See treq.delete().

RequestTraversalAgent Objects

	
class treq.testing.RequestTraversalAgent(rootResource)[source]

	IAgent [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgent.html] implementation that issues an in-memory
request rather than going out to a real network socket.

	
flush()[source]

	Flush all data between pending client/server pairs.

This is only necessary if a Resource under test returns
NOT_DONE_YET from its render method, making a response
asynchronous. In that case, after each write from the server,
flush() must be called so the client can see it.

	
request(method, uri, headers=None, bodyProducer=None)[source]

	Implement IAgent.request.

RequestSequence Objects

	
class treq.testing.RequestSequence(sequence, async_failure_reporter=None)[source]

	For an example usage, see RequestSequence.consume().

Takes a sequence of:

[((method, url, params, headers, data), (code, headers, body)),
 ...]

Expects the requests to arrive in sequence order. If there are no more
responses, or the request’s parameters do not match the next item’s
expected request parameters, calls sync_failure_reporter or
async_failure_reporter.

For the expected request tuples:

	method should be bytes [https://docs.python.org/3/library/stdtypes.html#bytes] normalized to lowercase.

	url should be a str normalized as per the transformations in that
(usually) preserve semantics [https://en.wikipedia.org/wiki/URL_normalization]. A URL to
http://something-that-looks-like-a-directory would be normalized to
http://something-that-looks-like-a-directory/
and a URL to http://something-that-looks-like-a-page/page.html
remains unchanged.

	params is a dictionary mapping bytes [https://docs.python.org/3/library/stdtypes.html#bytes] to list [https://docs.python.org/3/library/stdtypes.html#list] of
bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	headers is a dictionary mapping bytes [https://docs.python.org/3/library/stdtypes.html#bytes] to list [https://docs.python.org/3/library/stdtypes.html#list] of
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] – note that twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] may add its
own headers which are not guaranteed to be present (for instance,
user-agent or content-length), so it’s better to use some kind of
matcher like HasHeaders.

	data is a bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

For the response tuples:

	code is an integer representing the HTTP status code to return.

	headers is a dictionary mapping bytes [https://docs.python.org/3/library/stdtypes.html#bytes] to bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or
str [https://docs.python.org/3/library/stdtypes.html#str]. Note that the value is not a list.

	body is a bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	Variables

	
	sequence (list [https://docs.python.org/3/library/stdtypes.html#list]) – A sequence of (request tuple, response tuple)
two-tuples, as described above.

	async_failure_reporter – An optional callable that takes
a str [https://docs.python.org/3/library/stdtypes.html#str] message indicating a failure. It’s asynchronous because
it cannot just raise an exception—if it does, Resource.render [https://twistedmatrix.com/documents/current/api/twisted.web.resource.Resource.html#render] will just convert that into
a 500 response, and there will be no other failure reporting mechanism.

When the async_failure_reporter parameter is not passed, async failures
will be reported via a twisted.logger.Logger [https://twistedmatrix.com/documents/current/api/twisted.logger.Logger.html] instance, which
Trial’s test case classes (twisted.trial.unittest.TestCase [https://twistedmatrix.com/documents/current/api/twisted.trial.unittest.TestCase.html] and
SynchronousTestCase [https://twistedmatrix.com/documents/current/api/twisted.trial.unittest.SynchronousTestCase.html]) will translate into
a test failure.

Note

Some versions of
twisted.trial.unittest.SynchronousTestCase [https://twistedmatrix.com/documents/current/api/twisted.trial.unittest.SynchronousTestCase.html] report
logged errors on the wrong test: see Twisted #9267 [https://twistedmatrix.com/trac/ticket/9267].

When not subclassing Trial’s classes you must pass async_failure_reporter
and implement equivalent behavior or errors will pass silently. For
example:

async_failures = []
sequence_stubs = RequestSequence([...], async_failures.append)
stub_treq = StubTreq(StringStubbingResource(sequence_stubs))
with sequence_stubs.consume(self.fail): # self = unittest.TestCase
 stub_treq.get('http://fakeurl.com')

self.assertEqual([], async_failures)

	
consume(**kwds)[source]

	Usage:

sequence_stubs = RequestSequence([...])
stub_treq = StubTreq(StringStubbingResource(sequence_stubs))
self = twisted.trial.unittest.SynchronousTestCase
with sequence_stubs.consume(self.fail):
 stub_treq.get('http://fakeurl.com')
 stub_treq.get('http://another-fake-url.com')

If there are still remaining expected requests to be made in the
sequence, fails the provided test case.

	Parameters

	sync_failure_reporter – A callable that takes a single message
reporting failures. This can just raise an exception - it does
not need to be asynchronous, since the exception would not get
raised within a Resource.

	Returns

	a context manager that can be used to ensure all expected
requests have been made.

	
consumed()[source]

	
	Returns

	bool representing whether the entire sequence has been
consumed. This is useful in tests to assert that the expected
requests have all been made.

StringStubbingResource Objects

	
class treq.testing.StringStubbingResource(get_response_for)[source]

	A resource that takes a callable with 5 parameters
(method, url, params, headers, data) and returns
(code, headers, body).

The resource uses the callable to return a real response as a result of a
request.

The parameters for the callable are:

	method, the HTTP method as bytes.

	url, the full URL of the request as text.

	params, a dictionary of query parameters mapping query keys
lists of values (sorted alphabetically).

	headers, a dictionary of headers mapping header keys to
a list of header values (sorted alphabetically).

	data, the request body as bytes.

The callable must return a tuple of (code, headers, body) where the
code is the HTTP status code, the headers is a dictionary of bytes (unlike
the headers parameter, which is a dictionary of lists), and body is
a string that will be returned as the response body.

If there is a stubbing error, the return value is undefined (if an
exception is raised, Resource [https://twistedmatrix.com/documents/current/api/twisted.web.resource.Resource.html] will just eat it
and return 500 in its place). The callable, or whomever creates the
callable, should have a way to handle error reporting.

	
render(request)[source]

	Produce a response according to the stubs provided.

HasHeaders Objects

	
class treq.testing.HasHeaders(headers)[source]

	Since Twisted adds headers to a request, such as the host and the content
length, it’s necessary to test whether request headers CONTAIN the expected
headers (the ones that are not automatically added by Twisted).

This wraps a set of headers, and can be used in an equality test against
a superset if the provided headers. The headers keys are lowercased, and
keys and values are compared in their bytes-encoded forms.

Headers should be provided as a mapping from strings or bytes to a list of
strings or bytes.

MultiPartProducer Objects

treq.multipart.MultiPartProducer is used internally when making requests which involve files.

	
class treq.multipart.MultiPartProducer(fields, boundary=None, cooperator=<module 'twisted.internet.task' from '/home/docs/checkouts/readthedocs.org/user_builds/treq/envs/release-21.1.0/lib/python2.7/site-packages/twisted/internet/task.pyc'>)[source]

	MultiPartProducer takes parameters for a HTTP request and
produces bytes in multipart/form-data format defined in RFC 2388 [https://tools.ietf.org/html/rfc2388.html] and
RFC 2046 [https://tools.ietf.org/html/rfc2046.html].

The encoded request is produced incrementally and the bytes are
written to a consumer.

Fields should have form: [(parameter name, value), ...]

Accepted values:

	Unicode strings (in this case parameter will be encoded with utf-8)

	Tuples with (file name, content-type,
IBodyProducer [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IBodyProducer.html] objects)

Since MultiPartProducer can accept objects like
IBodyProducer [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IBodyProducer.html] which cannot be read from in an
event-driven manner it uses uses a
Cooperator [https://twistedmatrix.com/documents/current/api/twisted.internet.task.Cooperator.html] instance to schedule reads
from the underlying producers. Reading is also paused and resumed based on
notifications from the IConsumer provider being written to.

	Variables

	
	_fields – Sorted parameters, where all strings are enforced to be
unicode and file objects stacked on bottom (to produce a human readable
form-data request)

	_cooperate – A method like Cooperator.cooperate which is used to
schedule all reads.

	boundary – The generated boundary used in form-data encoding

	
pauseProducing()[source]

	Temporarily suspend copying bytes from the input file to the consumer
by pausing the CooperativeTask which drives that activity.

	
resumeProducing()[source]

	Undo the effects of a previous pauseProducing and resume copying
bytes to the consumer by resuming the CooperativeTask which drives
the write activity.

	
startProducing(consumer)[source]

	Start a cooperative task which will read bytes from the input file and
write them to consumer. Return a Deferred which fires after all
bytes have been written.

	Parameters

	consumer – Any IConsumer provider

	
stopProducing()[source]

	Permanently stop writing bytes from the file to the consumer by
stopping the underlying CooperativeTask.

Changelog

21.1.0 (2021-01-14)

Features

	Support for Python 3.9: treq is now tested with CPython 3.9. (#305 [https://github.com/twisted/treq/issues/305])

	The auth parameter now accepts arbitrary text and bytes [https://docs.python.org/3/library/stdtypes.html#bytes] for usernames and passwords. Text is encoded as UTF-8, per RFC 7617 [https://tools.ietf.org/html/rfc7617.html]. Previously only ASCII was allowed. (#268 [https://github.com/twisted/treq/issues/268])

	treq produces a more helpful exception when passed a tuple of the wrong size in the files parameter. (#299 [https://github.com/twisted/treq/issues/299])

Bugfixes

	The params argument once more accepts non-ASCII bytes, fixing a regression first introduced in treq 20.4.1. (#303 [https://github.com/twisted/treq/issues/303])

	treq request APIs no longer mutates a http_headers.Headers [https://twistedmatrix.com/documents/current/api/twisted.web.http_headers.Headers.html] passed as the headers parameter when the auth parameter is also passed. (#314 [https://github.com/twisted/treq/issues/314])

	The agent returned by treq.auth.add_auth() and treq.auth.add_basic_auth() is now marked to provide twisted.web.iweb.IAgent [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IAgent.html]. (#312 [https://github.com/twisted/treq/issues/312])

	treq’s package metadata has been updated to require six >= 1.13, noting a dependency introduced in treq 20.9.0. (#295 [https://github.com/twisted/treq/issues/295])

Improved Documentation

	The documentation of the params argument has been updated to more accurately describe its type-coercion behavior. (#281 [https://github.com/twisted/treq/issues/281])

	The treq.auth module has been documented. (#313 [https://github.com/twisted/treq/issues/313])

Deprecations and Removals

	Support for Python 2.7, which has reached end of support, is deprecated. This is the last release with support for Python 2.7. (#309 [https://github.com/twisted/treq/issues/309])

	Support for Python 3.5, which has reached end of support, is deprecated. This is the last release with support for Python 3.5. (#306 [https://github.com/twisted/treq/issues/306])

	Deprecate tolerance of non-string values when passing headers as a dict. They have historically been silently dropped, but will raise TypeError in the next treq release. Also deprecate passing headers other than dict [https://docs.python.org/3/library/stdtypes.html#dict], Headers [https://twistedmatrix.com/documents/current/api/twisted.web.http_headers.Headers.html], or None. Historically falsy values like [] or () were accepted. (#294 [https://github.com/twisted/treq/issues/294])

	treq request functions and methods like treq.get() and HTTPClient.post() now issue a DeprecationWarning when passed unknown keyword arguments, rather than ignoring them.
Mixing the json argument with files or data is also deprecated.
These warnings will change to a TypeError in the next treq release. (#297 [https://github.com/twisted/treq/issues/297])

	The minimum supported Twisted version has increased to 18.7.0. Older versions are no longer tested in CI. (#307 [https://github.com/twisted/treq/issues/307])

20.9.0 (2020-09-27)

Features

	The url parameter of HTTPClient.request() (and shortcuts like get()) now accept hyperlink.DecodedURL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.DecodedURL] and hyperlink.URL [https://hyperlink.readthedocs.io/en/latest/api.html#hyperlink.URL] in addition to str [https://docs.python.org/3/library/stdtypes.html#str] and bytes [https://docs.python.org/3/library/stdtypes.html#bytes]. (#212 [https://github.com/twisted/treq/issues/212])

	Compatibility with the upcoming Twisted 20.9.0 release (#290 [https://github.com/twisted/treq/issues/290]).

Improved Documentation

	An example of sending and receiving JSON has been added. (#278 [https://github.com/twisted/treq/issues/278])

20.4.1 (2020-04-16)

Bugfixes

	Correct a typo in the treq 20.4.0 package metadata that prevented upload to PyPI (pypa/twine#589 [https://github.com/pypa/twine/issues/589])

20.4.0 (2020-04-16)

Features

	Support for Python 3.8 and PyPy3: treq is now tested with these interpreters. (#271 [https://github.com/twisted/treq/issues/271])

Bugfixes

	treq.client.HTTPClient.request() and its aliases no longer raise UnicodeEncodeError [https://docs.python.org/3/library/exceptions.html#UnicodeEncodeError] when passed a Unicode url and non-empty params.
Now the URL and query parameters are concatenated as documented. (#264 [https://github.com/twisted/treq/issues/264])

	In treq 20.3.0 the params argument didn’t accept parameter names or values that contain the characters & or #.
Now these characters are properly escaped. (#282 [https://github.com/twisted/treq/issues/282])

Improved Documentation

	The treq documentation has been revised to emphasize use of treq.client.HTTPClient over the module-level convenience functions in the treq module. (#276 [https://github.com/twisted/treq/issues/276])

20.3.0 (2020-03-15)

Features

	Python 3.7 support. (#228 [https://github.com/twisted/treq/issues/228])

Bugfixes

	treq.testing.RequestTraversalAgent now passes its memory reactor to the twisted.web.server.Site [https://twistedmatrix.com/documents/current/api/twisted.web.server.Site.html] it creates, preventing the Site from polluting the global reactor. (#225 [https://github.com/twisted/treq/issues/225])

	treq.testing no longer generates deprecation warnings about twisted.test.proto_helpers.MemoryReactor. (#253 [https://github.com/twisted/treq/issues/253])

Improved Documentation

	The download_file.py example has been updated to do a streaming download with unbuffered=True. (#233 [https://github.com/twisted/treq/issues/233])

	The agent parameter to treq.request() has been documented. (#235 [https://github.com/twisted/treq/issues/235])

	The type of the headers element of a response tuple passed to treq.testing.RequestSequence is now correctly documented as str [https://docs.python.org/3/library/stdtypes.html#str]. (#237 [https://github.com/twisted/treq/issues/237])

Deprecations and Removals

	Drop support for Python 3.4. (#240 [https://github.com/twisted/treq/issues/240])

Misc

	#247 [https://github.com/twisted/treq/issues/247], #248 [https://github.com/twisted/treq/issues/248], #249 [https://github.com/twisted/treq/issues/249]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 treq	

 	
 	
 treq.auth	

 	
 	
 treq.client	

 	
 	
 treq.multipart	

 	
 	
 treq.response	

 	
 	
 treq.testing	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | J
 | M
 | P
 | R
 | S
 | T
 | U

_

 	
 	_Response (class in treq.response)

A

 	
 	add_auth() (in module treq.auth)

 	
 	add_basic_auth() (in module treq.auth)

C

 	
 	collect() (in module treq)

 	(treq.response._Response method)

 	consume() (treq.testing.RequestSequence method)

 	
 	consumed() (treq.testing.RequestSequence method)

 	content() (in module treq)

 	(treq.response._Response method)

 	cookies() (treq.response._Response method)

D

 	
 	delete() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

 	
 	deliverBody() (treq.response._Response method)

F

 	
 	flush() (treq.testing.RequestTraversalAgent method)

 	(treq.testing.treq.testing.StubTreq method)

G

 	
 	get() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

H

 	
 	HasHeaders (class in treq.testing)

 	head() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

 	
 	history() (treq.response._Response method)

 	HTTPClient (class in treq.client)

J

 	
 	json() (treq.response._Response method)

 	
 	json_content() (in module treq)

M

 	
 	MultiPartProducer (class in treq.multipart)

P

 	
 	patch() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

 	pauseProducing() (treq.multipart.MultiPartProducer method)

 	post() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

 	
 	put() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.treq.testing.StubTreq method)

R

 	
 	render() (treq.testing.StringStubbingResource method)

 	request() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.RequestTraversalAgent method)

 	(treq.testing.treq.testing.StubTreq method)

 	RequestSequence (class in treq.testing)

 	
 	RequestTraversalAgent (class in treq.testing)

 	resumeProducing() (treq.multipart.MultiPartProducer method)

 	
 RFC

 	RFC 2046

 	RFC 2388

 	RFC 2617

 	RFC 7617, [1]

S

 	
 	setPreviousResponse() (treq.response._Response method)

 	startProducing() (treq.multipart.MultiPartProducer method)

 	
 	stopProducing() (treq.multipart.MultiPartProducer method)

 	StringStubbingResource (class in treq.testing)

T

 	
 	text() (treq.response._Response method)

 	text_content() (in module treq)

 	treq (module)

 	treq.auth (module)

 	
 	treq.client (module)

 	treq.multipart (module)

 	treq.response (module)

 	treq.testing (module)

 	treq.testing.StubTreq (class in treq.testing)

U

 	
 	UnknownAuthConfig

 All modules for which code is available

	treq.api

	treq.auth

	treq.client

	treq.content

	treq.multipart

	treq.response

	treq.testing

	twisted.python.components

 Source code for treq.api

from __future__ import absolute_import, division, print_function

from twisted.web.client import Agent, HTTPConnectionPool

from treq.client import HTTPClient

[docs]def head(url, **kwargs):
 """
 Make a ``HEAD`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).head(url, _stacklevel=4, **kwargs)

[docs]def get(url, headers=None, **kwargs):
 """
 Make a ``GET`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).get(url, headers=headers, _stacklevel=4, **kwargs)

[docs]def post(url, data=None, **kwargs):
 """
 Make a ``POST`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).post(url, data=data, _stacklevel=4, **kwargs)

[docs]def put(url, data=None, **kwargs):
 """
 Make a ``PUT`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).put(url, data=data, _stacklevel=4, **kwargs)

[docs]def patch(url, data=None, **kwargs):
 """
 Make a ``PATCH`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).patch(url, data=data, _stacklevel=4, **kwargs)

[docs]def delete(url, **kwargs):
 """
 Make a ``DELETE`` request.

 See :py:func:`treq.request`
 """
 return _client(kwargs).delete(url, _stacklevel=4, **kwargs)

[docs]def request(method, url, **kwargs):
 """
 Make an HTTP request.

 :param str method: HTTP method. Example: ``'GET'``, ``'HEAD'``. ``'PUT'``,
 ``'POST'``.

 :param url: http or https URL, which may include query arguments.
 :type url: :class:`hyperlink.DecodedURL`, `str`, `bytes`, or
 :class:`hyperlink.EncodedURL`

 :param headers: Optional HTTP Headers to send with this request.
 :type headers: Headers or None

 :param params: Optional parameters to be append as the query string to
 the URL, any query string parameters in the URL already will be
 preserved.

 :type params: dict w/ str or list/tuple of str values, list of 2-tuples, or
 None.

 :param data: Optional request body.
 :type data: str, file-like, IBodyProducer, or None

 :param json: Optional JSON-serializable content to pass in body.
 :type json: dict, list/tuple, int, string/unicode, bool, or None

 :param reactor: Optional twisted reactor.

 :param bool persistent: Use persistent HTTP connections. Default: ``True``
 :param bool allow_redirects: Follow HTTP redirects. Default: ``True``

 :param auth: HTTP Basic Authentication information --- see
 :func:`treq.auth.add_auth`.
 :type auth: tuple of ``('username', 'password')``.

 :param cookies: Cookies to send with this request. The HTTP kind, not the
 tasty kind.
 :type cookies: ``dict`` or ``cookielib.CookieJar``

 :param int timeout: Request timeout seconds. If a response is not
 received within this timeframe, a connection is aborted with
 ``CancelledError``.

 :param bool browser_like_redirects: Use browser like redirects
 (i.e. Ignore RFC2616 section 10.3 and follow redirects from
 POST requests). Default: ``False``

 :param bool unbuffered: Pass ``True`` to to disable response buffering. By
 default treq buffers the entire response body in memory.

 :param agent: Provide your own custom agent. Use this to override things
 like ``connectTimeout`` or ``BrowserLikePolicyForHTTPS``. By
 default, treq will create its own Agent with reasonable
 defaults.
 :type agent: twisted.web.iweb.IAgent

 :rtype: Deferred that fires with an IResponse provider.

 .. versionchanged:: treq 20.9.0

 The *url* param now accepts :class:`hyperlink.DecodedURL` and
 :class:`hyperlink.EncodedURL` objects.
 """
 return _client(kwargs).request(method, url, _stacklevel=3, **kwargs)

#
Private API
#

def default_reactor(reactor):
 """
 Return the specified reactor or the default.
 """
 if reactor is None:
 from twisted.internet import reactor

 return reactor

_global_pool = [None]

def get_global_pool():
 return _global_pool[0]

def set_global_pool(pool):
 _global_pool[0] = pool

def default_pool(reactor, pool, persistent):
 """
 Return the specified pool or a pool with the specified reactor and
 persistence.
 """
 reactor = default_reactor(reactor)

 if pool is not None:
 return pool

 if persistent is False:
 return HTTPConnectionPool(reactor, persistent=persistent)

 if get_global_pool() is None:
 set_global_pool(HTTPConnectionPool(reactor, persistent=True))

 return get_global_pool()

def _client(kwargs):
 agent = kwargs.pop("agent", None)
 pool = kwargs.pop("pool", None)
 persistent = kwargs.pop("persistent", None)
 if agent is None:
 # "reactor" isn't removed from kwargs because it must also be passed
 # down for use in the timeout logic.
 reactor = default_reactor(kwargs.get("reactor"))
 pool = default_pool(reactor, pool, persistent)
 agent = Agent(reactor, pool=pool)
 return HTTPClient(agent)

 Source code for treq.auth

Copyright 2012-2020 The treq Authors.
See LICENSE for details.
from __future__ import absolute_import, division, print_function

import binascii
from typing import Union

from twisted.web.http_headers import Headers
from twisted.web.iweb import IAgent
from zope.interface import implementer

[docs]class UnknownAuthConfig(Exception):
 """
 The authentication config provided couldn't be interpreted.
 """
 def __init__(self, config):
 super(Exception, self).__init__(
 '{0!r} not of a known type.'.format(config))

@implementer(IAgent)
class _RequestHeaderSetterAgent(object):
 """
 Wrap an agent to set request headers

 :ivar _agent: The wrapped agent.

 :ivar _request_headers:
 Headers to set on each request before forwarding it to the wrapped
 agent.
 """
 def __init__(self, agent, headers):
 self._agent = agent
 self._headers = headers

 def request(self, method, uri, headers=None, bodyProducer=None):
 if headers is None:
 requestHeaders = self._headers
 else:
 requestHeaders = headers.copy()
 for header, values in self._headers.getAllRawHeaders():
 requestHeaders.setRawHeaders(header, values)

 return self._agent.request(
 method, uri, headers=requestHeaders, bodyProducer=bodyProducer)

[docs]def add_basic_auth(agent, username, password):
 # type: (IAgent, Union[str, bytes], Union[str, bytes]) -> IAgent
 """
 Wrap an agent to add HTTP basic authentication

 The returned agent sets the *Authorization* request header according to the
 basic authentication scheme described in :rfc:`7617`. This header contains
 the given *username* and *password* in plaintext, and thus should only be
 used over an encrypted transport (HTTPS).

 Note that the colon (``:``) is used as a delimiter between the *username*
 and *password*, so if either parameter includes a colon the interpretation
 of the *Authorization* header is server-defined.

 :param agent: Agent to wrap.
 :param username: The username.
 :param password: The password.

 :returns: :class:`~twisted.web.iweb.IAgent`
 """
 if not isinstance(username, bytes):
 username = username.encode('utf-8')
 if not isinstance(password, bytes):
 password = password.encode('utf-8')

 creds = binascii.b2a_base64(b'%s:%s' % (username, password)).rstrip(b'\n')
 return _RequestHeaderSetterAgent(
 agent,
 Headers({b'Authorization': [b'Basic ' + creds]}),
)

[docs]def add_auth(agent, auth_config):
 """
 Wrap an agent to perform authentication

 :param agent: Agent to wrap.

 :param auth_config:
 A ``('username', 'password')`` tuple --- see :func:`add_basic_auth`.

 :returns: :class:`~twisted.web.iweb.IAgent`

 :raises UnknownAuthConfig:
 When the format *auth_config* isn't supported.
 """
 if isinstance(auth_config, tuple):
 return add_basic_auth(agent, auth_config[0], auth_config[1])

 raise UnknownAuthConfig(auth_config)

 Source code for treq.client

from __future__ import absolute_import, division, print_function

import mimetypes
import uuid
import warnings

import io

import six
from six.moves.collections_abc import Mapping
from six.moves.http_cookiejar import CookieJar
from six.moves.urllib.parse import quote_plus, urlencode as _urlencode

from twisted.internet.interfaces import IProtocol
from twisted.internet.defer import Deferred
from twisted.python.components import proxyForInterface
from twisted.python.filepath import FilePath
from hyperlink import DecodedURL, EncodedURL

from twisted.web.http_headers import Headers
from twisted.web.iweb import IBodyProducer, IResponse

from twisted.web.client import (
 FileBodyProducer,
 RedirectAgent,
 BrowserLikeRedirectAgent,
 ContentDecoderAgent,
 GzipDecoder,
 CookieAgent
)

from twisted.python.components import registerAdapter
from json import dumps as json_dumps

from treq.auth import add_auth
from treq import multipart
from treq.response import _Response
from requests.cookies import cookiejar_from_dict, merge_cookies

_NOTHING = object()

def urlencode(query, doseq):
 return six.ensure_binary(_urlencode(query, doseq), encoding='ascii')

class _BodyBufferingProtocol(proxyForInterface(IProtocol)):
 def __init__(self, original, buffer, finished):
 self.original = original
 self.buffer = buffer
 self.finished = finished

 def dataReceived(self, data):
 self.buffer.append(data)
 self.original.dataReceived(data)

 def connectionLost(self, reason):
 self.original.connectionLost(reason)
 self.finished.errback(reason)

class _BufferedResponse(proxyForInterface(IResponse)):
 def __init__(self, original):
 self.original = original
 self._buffer = []
 self._waiters = []
 self._waiting = None
 self._finished = False
 self._reason = None

 def _deliverWaiting(self, reason):
 self._reason = reason
 self._finished = True
 for waiter in self._waiters:
 for segment in self._buffer:
 waiter.dataReceived(segment)
 waiter.connectionLost(reason)

 def deliverBody(self, protocol):
 if self._waiting is None and not self._finished:
 self._waiting = Deferred()
 self._waiting.addBoth(self._deliverWaiting)
 self.original.deliverBody(
 _BodyBufferingProtocol(
 protocol,
 self._buffer,
 self._waiting
)
)
 elif self._finished:
 for segment in self._buffer:
 protocol.dataReceived(segment)
 protocol.connectionLost(self._reason)
 else:
 self._waiters.append(protocol)

[docs]class HTTPClient(object):
 def __init__(self, agent, cookiejar=None,
 data_to_body_producer=IBodyProducer):
 self._agent = agent
 self._cookiejar = cookiejar or cookiejar_from_dict({})
 self._data_to_body_producer = data_to_body_producer

[docs] def get(self, url, **kwargs):
 """
 See :func:`treq.get()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('GET', url, **kwargs)

[docs] def put(self, url, data=None, **kwargs):
 """
 See :func:`treq.put()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('PUT', url, data=data, **kwargs)

[docs] def patch(self, url, data=None, **kwargs):
 """
 See :func:`treq.patch()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('PATCH', url, data=data, **kwargs)

[docs] def post(self, url, data=None, **kwargs):
 """
 See :func:`treq.post()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('POST', url, data=data, **kwargs)

[docs] def head(self, url, **kwargs):
 """
 See :func:`treq.head()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('HEAD', url, **kwargs)

[docs] def delete(self, url, **kwargs):
 """
 See :func:`treq.delete()`.
 """
 kwargs.setdefault('_stacklevel', 3)
 return self.request('DELETE', url, **kwargs)

[docs] def request(self, method, url, **kwargs):
 """
 See :func:`treq.request()`.
 """
 method = method.encode('ascii').upper()
 stacklevel = kwargs.pop('_stacklevel', 2)

 if isinstance(url, DecodedURL):
 parsed_url = url.encoded_url
 elif isinstance(url, EncodedURL):
 parsed_url = url
 elif isinstance(url, six.text_type):
 # We use hyperlink in lazy mode so that users can pass arbitrary
 # bytes in the path and querystring.
 parsed_url = EncodedURL.from_text(url)
 else:
 parsed_url = EncodedURL.from_text(url.decode('ascii'))

 # Join parameters provided in the URL
 # and the ones passed as argument.
 params = kwargs.pop('params', None)
 if params:
 parsed_url = parsed_url.replace(
 query=parsed_url.query + tuple(_coerced_query_params(params))
)

 url = parsed_url.to_uri().to_text().encode('ascii')

 headers = self._request_headers(kwargs.pop('headers', None), stacklevel + 1)

 bodyProducer, contentType = self._request_body(
 data=kwargs.pop('data', None),
 files=kwargs.pop('files', None),
 json=kwargs.pop('json', _NOTHING),
 stacklevel=stacklevel + 1,
)
 if contentType is not None:
 headers.setRawHeaders(b'Content-Type', [contentType])

 cookies = kwargs.pop('cookies', {})

 if not isinstance(cookies, CookieJar):
 cookies = cookiejar_from_dict(cookies)

 cookies = merge_cookies(self._cookiejar, cookies)
 wrapped_agent = CookieAgent(self._agent, cookies)

 browser_like_redirects = kwargs.pop('browser_like_redirects', False)
 if kwargs.pop('allow_redirects', True):
 if browser_like_redirects:
 wrapped_agent = BrowserLikeRedirectAgent(wrapped_agent)
 else:
 wrapped_agent = RedirectAgent(wrapped_agent)

 wrapped_agent = ContentDecoderAgent(wrapped_agent,
 [(b'gzip', GzipDecoder)])

 auth = kwargs.pop('auth', None)
 if auth:
 wrapped_agent = add_auth(wrapped_agent, auth)

 d = wrapped_agent.request(
 method, url, headers=headers,
 bodyProducer=bodyProducer)

 reactor = kwargs.pop('reactor', None)
 if reactor is None:
 from twisted.internet import reactor
 timeout = kwargs.pop('timeout', None)
 if timeout:
 delayedCall = reactor.callLater(timeout, d.cancel)

 def gotResult(result):
 if delayedCall.active():
 delayedCall.cancel()
 return result

 d.addBoth(gotResult)

 if not kwargs.pop('unbuffered', False):
 d.addCallback(_BufferedResponse)

 if kwargs:
 warnings.warn(
 (
 "Got unexpected keyword argument: {}."
 " treq will ignore this argument,"
 " but will raise TypeError in the next treq release."
).format(", ".join(repr(k) for k in kwargs)),
 DeprecationWarning,
 stacklevel=stacklevel,
)

 return d.addCallback(_Response, cookies)

 def _request_headers(self, headers, stacklevel):
 """
 Convert the *headers* argument to a :class:`Headers` instance

 :returns:
 :class:`twisted.web.http_headers.Headers`
 """
 if isinstance(headers, dict):
 h = Headers({})
 for k, v in headers.items():
 if isinstance(v, (bytes, six.text_type)):
 h.addRawHeader(k, v)
 elif isinstance(v, list):
 h.setRawHeaders(k, v)
 else:
 warnings.warn(
 (
 "The value of headers key {!r} has non-string type {}"
 " and will be dropped."
 " This will raise TypeError in the next treq release."
).format(k, type(v)),
 DeprecationWarning,
 stacklevel=stacklevel,
)
 return h
 if isinstance(headers, Headers):
 return headers
 if headers is None:
 return Headers({})

 warnings.warn(
 (
 "headers must be a dict, twisted.web.http_headers.Headers, or None,"
 " but found {}, which will be ignored."
 " This will raise TypeError in the next treq release."
).format(type(headers)),
 DeprecationWarning,
 stacklevel=stacklevel,
)
 return Headers({})

 def _request_body(self, data, files, json, stacklevel):
 """
 Here we choose a right producer based on the parameters passed in.

 :params data:
 Arbitrary request body data.

 If *files* is also passed this must be a :class:`dict`,
 a :class:`tuple` or :class:`list` of field tuples as accepted by
 :class:`MultiPartProducer`. The request is assigned a Content-Type
 of ``multipart/form-data``.

 If a :class:`dict`, :class:`list`, or :class:`tuple` it is
 URL-encoded and the request assigned a Content-Type of
 ``application/x-www-form-urlencoded``.

 Otherwise, any non-``None`` value is passed to the client's
 data_to_body_producer callable (by default,
 :class:`IBodyProducer`), which accepts file-like objects.

 :params files:
 Files to include in the request body, in any of the several formats
 described in :func:`_convert_files()`.

 :params json:
 JSON-encodable data, or the sentinel `_NOTHING`. The sentinel is
 necessary because ``None`` is a valid JSON value.
 """
 if json is not _NOTHING and (files or data):
 warnings.warn(
 (
 "Argument 'json' will be ignored because '{}' was also passed."
 " This will raise TypeError in the next treq release."
).format("data" if data else "files"),
 DeprecationWarning,
 stacklevel=stacklevel,
)

 if files:
 # If the files keyword is present we will issue a
 # multipart/form-data request as it suits better for cases
 # with files and/or large objects.
 files = list(_convert_files(files))
 boundary = str(uuid.uuid4()).encode('ascii')
 if data:
 data = _convert_params(data)
 else:
 data = []

 return (
 multipart.MultiPartProducer(data + files, boundary=boundary),
 b'multipart/form-data; boundary=' + boundary,
)

 # Otherwise stick to x-www-form-urlencoded format
 # as it's generally faster for smaller requests.
 if isinstance(data, (dict, list, tuple)):
 return (
 self._data_to_body_producer(urlencode(data, doseq=True)),
 b'application/x-www-form-urlencoded',
)
 elif data:
 return (
 self._data_to_body_producer(data),
 None,
)

 if json is not _NOTHING:
 return (
 self._data_to_body_producer(
 json_dumps(json, separators=(u',', u':')).encode('utf-8'),
),
 b'application/json; charset=UTF-8',
)

 return None, None

def _convert_params(params):
 if hasattr(params, "iteritems"):
 return list(sorted(params.iteritems()))
 elif hasattr(params, "items"):
 return list(sorted(params.items()))
 elif isinstance(params, (tuple, list)):
 return list(params)
 else:
 raise ValueError("Unsupported format")

def _convert_files(files):
 """Files can be passed in a variety of formats:

 * {'file': open("bla.f")}
 * {'file': (name, open("bla.f"))}
 * {'file': (name, content-type, open("bla.f"))}
 * Anything that has iteritems method, e.g. MultiDict:
 MultiDict([(name, open()), (name, open())]

 Our goal is to standardize it to unified form of:

 * [(param, (file name, content type, producer))]
 """

 if hasattr(files, "iteritems"):
 files = files.iteritems()
 elif hasattr(files, "items"):
 files = files.items()

 for param, val in files:
 file_name, content_type, fobj = (None, None, None)
 if isinstance(val, tuple):
 if len(val) == 2:
 file_name, fobj = val
 elif len(val) == 3:
 file_name, content_type, fobj = val
 else:
 # NB: This is TypeError for backward compatibility. This case
 # used to fall through to `IBodyProducer`, below, which raised
 # TypeError about being unable to coerce None.
 raise TypeError(
 (
 "`files` argument must be a sequence of tuples of"
 " (file_name, file_obj) or"
 " (file_name, content_type, file_obj),"
 " but the {!r} tuple has length {}: {!r}"
).format(param, len(val), val),
)
 else:
 fobj = val
 if hasattr(fobj, "name"):
 file_name = FilePath(fobj.name).basename()

 if not content_type:
 content_type = _guess_content_type(file_name)

 # XXX: Shouldn't this call self._data_to_body_producer?
 yield (param, (file_name, content_type, IBodyProducer(fobj)))

def _query_quote(v):
 # (Any) -> Text
 """
 Percent-encode a querystring name or value.

 :param v: A value.

 :returns:
 The value, coerced to a string and percent-encoded as appropriate for
 a querystring (with space as ``+``).
 """
 if not isinstance(v, (str, bytes)):
 v = six.text_type(v)
 if not isinstance(v, bytes):
 v = v.encode("utf-8")
 q = quote_plus(v)
 if isinstance(q, bytes):
 # Python 2.7 returnes bytes when given bytes, but Python 3.x always
 # returns str. Coverage disabled here to stop Coveralls complaining
 # until we can drop Python 2.7 support.
 q = q.decode("ascii") # pragma: no cover
 return q

def _coerced_query_params(params):
 """
 Carefully coerce *params* in the same way as `urllib.parse.urlencode()`

 Parameter names and values are coerced to unicode, which is encoded as
 UTF-8 and then percent-encoded. As a special case, `bytes` are directly
 percent-encoded.

 :param params:
 A mapping or sequence of (name, value) two-tuples. The value may be
 a list or tuple of multiple values. Names and values may be pretty much
 any type.

 :returns:
 A generator that yields two-tuples containing percent-encoded text
 strings.
 :rtype:
 Iterator[Tuple[Text, Text]]
 """
 if isinstance(params, Mapping):
 items = params.items()
 else:
 items = params

 for key, values in items:
 key_quoted = _query_quote(key)

 if not isinstance(values, (list, tuple)):
 values = (values,)
 for value in values:
 yield key_quoted, _query_quote(value)

def _from_bytes(orig_bytes):
 return FileBodyProducer(io.BytesIO(orig_bytes))

def _from_file(orig_file):
 return FileBodyProducer(orig_file)

def _guess_content_type(filename):
 if filename:
 guessed = mimetypes.guess_type(filename)[0]
 else:
 guessed = None
 return guessed or 'application/octet-stream'

registerAdapter(_from_bytes, bytes, IBodyProducer)
registerAdapter(_from_file, io.BytesIO, IBodyProducer)

if six.PY2:
 registerAdapter(_from_file, six.StringIO, IBodyProducer)
 # Suppress lint failure on Python 3.
 registerAdapter(_from_file, file, IBodyProducer) # noqa: F821
else:
 # file()/open() equiv on Py3
 registerAdapter(_from_file, io.BufferedReader, IBodyProducer)

 Source code for treq.content

from __future__ import absolute_import, division, print_function

import cgi
import json

from twisted.internet.defer import Deferred, succeed

from twisted.internet.protocol import Protocol
from twisted.web.client import ResponseDone
from twisted.web.http import PotentialDataLoss

def _encoding_from_headers(headers):
 content_types = headers.getRawHeaders(u'content-type')
 if content_types is None:
 return None

 # This seems to be the choice browsers make when encountering multiple
 # content-type headers.
 content_type, params = cgi.parse_header(content_types[-1])

 if 'charset' in params:
 return params.get('charset').strip("'\"")

 if content_type == 'application/json':
 return 'UTF-8'

class _BodyCollector(Protocol):
 def __init__(self, finished, collector):
 self.finished = finished
 self.collector = collector

 def dataReceived(self, data):
 self.collector(data)

 def connectionLost(self, reason):
 if reason.check(ResponseDone):
 self.finished.callback(None)
 elif reason.check(PotentialDataLoss):
 # http://twistedmatrix.com/trac/ticket/4840
 self.finished.callback(None)
 else:
 self.finished.errback(reason)

[docs]def collect(response, collector):
 """
 Incrementally collect the body of the response.

 This function may only be called **once** for a given response.

 :param IResponse response: The HTTP response to collect the body from.
 :param collector: A callable to be called each time data is available
 from the response body.
 :type collector: single argument callable

 :rtype: Deferred that fires with None when the entire body has been read.
 """
 if response.length == 0:
 return succeed(None)

 d = Deferred()
 response.deliverBody(_BodyCollector(d, collector))
 return d

[docs]def content(response):
 """
 Read the contents of an HTTP response.

 This function may be called multiple times for a response, it uses a
 ``WeakKeyDictionary`` to cache the contents of the response.

 :param IResponse response: The HTTP Response to get the contents of.

 :rtype: Deferred that fires with the content as a str.
 """
 _content = []
 d = collect(response, _content.append)
 d.addCallback(lambda _: b''.join(_content))
 return d

[docs]def json_content(response, **kwargs):
 """
 Read the contents of an HTTP response and attempt to decode it as JSON.

 This function relies on :py:func:`content` and so may be called more than
 once for a given response.

 :param IResponse response: The HTTP Response to get the contents of.

 :param kwargs: Any keyword arguments accepted by :py:func:`json.loads`

 :rtype: Deferred that fires with the decoded JSON.
 """
 # RFC7159 (8.1): Default JSON character encoding is UTF-8
 d = text_content(response, encoding='utf-8')

 d.addCallback(lambda text: json.loads(text, **kwargs))
 return d

[docs]def text_content(response, encoding='ISO-8859-1'):
 """
 Read the contents of an HTTP response and decode it with an appropriate
 charset, which may be guessed from the ``Content-Type`` header.

 :param IResponse response: The HTTP Response to get the contents of.
 :param str encoding: A charset, such as ``UTF-8`` or ``ISO-8859-1``,
 used if the response does not specify an encoding.

 :rtype: Deferred that fires with a unicode string.
 """
 def _decode_content(c):

 e = _encoding_from_headers(response.headers)

 if e is not None:
 return c.decode(e)

 return c.decode(encoding)

 d = content(response)
 d.addCallback(_decode_content)
 return d

 Source code for treq.multipart

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from __future__ import absolute_import, division, print_function

from uuid import uuid4
from io import BytesIO
from contextlib import closing

from six import integer_types, text_type

from twisted.internet import defer, task
from twisted.web.iweb import UNKNOWN_LENGTH, IBodyProducer

from zope.interface import implementer

CRLF = b"\r\n"

[docs]@implementer(IBodyProducer)
class MultiPartProducer(object):
 """
 :class:`MultiPartProducer` takes parameters for a HTTP request and
 produces bytes in multipart/form-data format defined in :rfc:`2388` and
 :rfc:`2046`.

 The encoded request is produced incrementally and the bytes are
 written to a consumer.

 Fields should have form: ``[(parameter name, value), ...]``

 Accepted values:

 * Unicode strings (in this case parameter will be encoded with utf-8)
 * Tuples with (file name, content-type,
 :class:`~twisted.web.iweb.IBodyProducer` objects)

 Since :class:`MultiPartProducer` can accept objects like
 :class:`~twisted.web.iweb.IBodyProducer` which cannot be read from in an
 event-driven manner it uses uses a
 :class:`~twisted.internet.task.Cooperator` instance to schedule reads
 from the underlying producers. Reading is also paused and resumed based on
 notifications from the :class:`IConsumer` provider being written to.

 :ivar _fields: Sorted parameters, where all strings are enforced to be
 unicode and file objects stacked on bottom (to produce a human readable
 form-data request)

 :ivar _cooperate: A method like `Cooperator.cooperate` which is used to
 schedule all reads.

 :ivar boundary: The generated boundary used in form-data encoding
 :type boundary: `bytes`
 """

 def __init__(self, fields, boundary=None, cooperator=task):
 self._fields = list(_sorted_by_type(_converted(fields)))
 self._currentProducer = None
 self._cooperate = cooperator.cooperate

 self.boundary = boundary or uuid4().hex

 if isinstance(self.boundary, text_type):
 self.boundary = self.boundary.encode('ascii')

 self.length = self._calculateLength()

[docs] def startProducing(self, consumer):
 """
 Start a cooperative task which will read bytes from the input file and
 write them to `consumer`. Return a `Deferred` which fires after all
 bytes have been written.

 :param consumer: Any `IConsumer` provider
 """
 self._task = self._cooperate(self._writeLoop(consumer))
 d = self._task.whenDone()

 def maybeStopped(reason):
 reason.trap(task.TaskStopped)
 return defer.Deferred()
 d.addCallbacks(lambda ignored: None, maybeStopped)
 return d

[docs] def stopProducing(self):
 """
 Permanently stop writing bytes from the file to the consumer by
 stopping the underlying `CooperativeTask`.
 """
 if self._currentProducer:
 self._currentProducer.stopProducing()
 self._task.stop()

[docs] def pauseProducing(self):
 """
 Temporarily suspend copying bytes from the input file to the consumer
 by pausing the `CooperativeTask` which drives that activity.
 """
 if self._currentProducer:
 # Having a current producer means that we are in
 # the paused state because we've returned
 # the deferred of the current producer to the
 # the cooperator. So this request
 # for pausing us is actually a request to pause
 # our underlying current producer.
 self._currentProducer.pauseProducing()
 else:
 self._task.pause()

[docs] def resumeProducing(self):
 """
 Undo the effects of a previous `pauseProducing` and resume copying
 bytes to the consumer by resuming the `CooperativeTask` which drives
 the write activity.
 """
 if self._currentProducer:
 self._currentProducer.resumeProducing()
 else:
 self._task.resume()

 def _calculateLength(self):
 """
 Determine how many bytes the overall form post would consume.
 The easiest way is to calculate is to generate of `fObj`
 (assuming it is not modified from this point on).
 If the determination cannot be made, return `UNKNOWN_LENGTH`.
 """
 consumer = _LengthConsumer()
 for i in list(self._writeLoop(consumer)):
 pass
 return consumer.length

 def _getBoundary(self, final=False):
 """
 Returns a boundary line, either final (the one that ends the
 form data request or a regular, the one that separates the boundaries)

 --this-is-my-boundary
 """
 f = b"--" if final else b""
 return b"--" + self.boundary + f

 def _writeLoop(self, consumer):
 """
 Return an iterator which generates the multipart/form-data
 request including the encoded objects
 and writes them to the consumer for each time it is iterated.
 """
 for index, (name, value) in enumerate(self._fields):
 # We don't write the CRLF of the first boundary:
 # HTTP request headers are already separated with CRLF
 # from the request body, another newline is possible
 # and should be considered as an empty preamble per rfc2046,
 # but is generally confusing, so we omit it when generating
 # the request. We don't write Content-Type: multipart/form-data
 # header here as well as it's defined in the context of the HTTP
 # request headers, not the producer, so we gust generate
 # the body.

 # It's also important to note that the boundary in the message
 # is defined not only by "--boundary-value" but
 # but with CRLF characers before it and after the line.
 # This is very important.
 # proper boundary is "CRLF--boundary-valueCRLF"
 consumer.write(
 (CRLF if index != 0 else b"") + self._getBoundary() + CRLF)
 yield self._writeField(name, value, consumer)

 consumer.write(CRLF + self._getBoundary(final=True) + CRLF)

 def _writeField(self, name, value, consumer):
 if isinstance(value, text_type):
 self._writeString(name, value, consumer)
 elif isinstance(value, tuple):
 filename, content_type, producer = value
 return self._writeFile(
 name, filename, content_type, producer, consumer)

 def _writeString(self, name, value, consumer):
 cdisp = _Header(b"Content-Disposition", b"form-data")
 cdisp.add_param(b"name", name)
 consumer.write(bytes(cdisp) + CRLF + CRLF)

 encoded = value.encode("utf-8")
 consumer.write(encoded)
 self._currentProducer = None

 def _writeFile(self, name, filename, content_type, producer, consumer):
 cdisp = _Header(b"Content-Disposition", b"form-data")
 cdisp.add_param(b"name", name)
 if filename:
 cdisp.add_param(b"filename", filename)

 consumer.write(bytes(cdisp) + CRLF)
 consumer.write(bytes(_Header(b"Content-Type", content_type)) + CRLF)
 if producer.length != UNKNOWN_LENGTH:
 consumer.write(
 bytes(_Header(b"Content-Length", producer.length)) + CRLF)
 consumer.write(CRLF)

 if isinstance(consumer, _LengthConsumer):
 consumer.write(producer.length)
 else:
 self._currentProducer = producer

 def unset(val):
 self._currentProducer = None
 return val

 d = producer.startProducing(consumer)
 d.addCallback(unset)
 return d

def _escape(value):
 """
 This function prevents header values from corrupting the request,
 a newline in the file name parameter makes form-data request unreadable
 for majority of parsers.
 """
 if not isinstance(value, (bytes, text_type)):
 value = text_type(value)
 if isinstance(value, bytes):
 value = value.decode('utf-8')
 return value.replace(u"\r", u"").replace(u"\n", u"").replace(u'"', u'\\"')

def _enforce_unicode(value):
 """
 This function enforces the stings passed to be unicode, so we won't
 need to guess what's the encoding of the binary strings passed in.
 If someone needs to pass the binary string, use BytesIO and wrap it with
 `FileBodyProducer`.
 """
 if isinstance(value, text_type):
 return value

 elif isinstance(value, bytes):
 # we got a byte string, and we have no ide what's the encoding of it
 # we can only assume that it's something cool
 try:
 return text_type(value, "utf-8")
 except UnicodeDecodeError:
 raise ValueError(
 "Supplied raw bytes that are not ascii/utf-8."
 " When supplying raw string make sure it's ascii or utf-8"
 ", or work with unicode if you are not sure")
 else:
 raise ValueError(
 "Unsupported field type: %s" % (value.__class__.__name__,))

def _converted(fields):
 if hasattr(fields, "iteritems"):
 fields = fields.iteritems()
 elif hasattr(fields, "items"):
 fields = fields.items()

 for name, value in fields:
 name = _enforce_unicode(name)

 if isinstance(value, (tuple, list)):
 if len(value) != 3:
 raise ValueError(
 "Expected tuple: (filename, content type, producer)")
 filename, content_type, producer = value
 filename = _enforce_unicode(filename) if filename else None
 yield name, (filename, content_type, producer)

 elif isinstance(value, (bytes, text_type)):
 yield name, _enforce_unicode(value)

 else:
 raise ValueError(
 "Unsupported value, expected string, unicode "
 "or tuple (filename, content type, IBodyProducer)")

class _LengthConsumer(object):
 """
 `_LengthConsumer` is used to calculate the length of the multi-part
 request. The easiest way to do that is to consume all the fields,
 but instead writing them to the string just accumulate the request
 length.

 :ivar length: The length of the request. Can be `UNKNOWN_LENGTH`
 if consumer finds the field that has length that can not be calculated

 """

 def __init__(self):
 self.length = 0

 def write(self, value):
 # this means that we have encountered
 # unknown length producer
 # so we need to stop attempts calculating
 if self.length is UNKNOWN_LENGTH:
 return

 if value is UNKNOWN_LENGTH:
 self.length = value
 elif isinstance(value, integer_types):
 self.length += value
 else:
 self.length += len(value)

class _Header(object):
 """
 `_Header` This class is a tiny wrapper that produces
 request headers. We can't use standard python header
 class because it encodes unicode fields using =? bla bla ?=
 encoding, which is correct, but no one in HTTP world expects
 that, everyone wants utf-8 raw bytes.

 """
 def __init__(self, name, value, params=None):
 self.name = name
 self.value = value
 self.params = params or []

 def add_param(self, name, value):
 self.params.append((name, value))

 def __bytes__(self):
 with closing(BytesIO()) as h:
 h.write(self.name + b": " + _escape(self.value).encode("us-ascii"))
 if self.params:
 for (name, val) in self.params:
 h.write(b"; ")
 h.write(_escape(name).encode("us-ascii"))
 h.write(b"=")
 h.write(b'"' + _escape(val).encode('utf-8') + b'"')
 h.seek(0)
 return h.read()

 def __str__(self):
 return self.__bytes__()

def _sorted_by_type(fields):
 """Sorts params so that strings are placed before files.

 That makes a request more readable, as generally files are bigger.
 It also provides deterministic order of fields what is easier for testing.
 """
 def key(p):
 key, val = p
 if isinstance(val, (bytes, text_type)):
 return (0, key)
 else:
 return (1, key)
 return sorted(fields, key=key)

 Source code for treq.response

from __future__ import absolute_import, division, print_function

from twisted.python.components import proxyForInterface
from twisted.web.iweb import IResponse, UNKNOWN_LENGTH
from twisted.python import reflect

from requests.cookies import cookiejar_from_dict

from treq.content import collect, content, json_content, text_content

[docs]class _Response(proxyForInterface(IResponse)):
 """
 A wrapper for :class:`twisted.web.iweb.IResponse` which manages cookies and
 adds a few convenience methods.
 """

 def __init__(self, original, cookiejar):
 self.original = original
 self._cookiejar = cookiejar

 def __repr__(self):
 """
 Generate a representation of the response which includes the HTTP
 status code, Content-Type header, and body size, if available.
 """
 if self.original.length == UNKNOWN_LENGTH:
 size = 'unknown size'
 else:
 size = '{:,d} bytes'.format(self.original.length)
 # Display non-ascii bits of the content-type header as backslash
 # escapes.
 content_type_bytes = b', '.join(
 self.original.headers.getRawHeaders(b'content-type', ()))
 content_type = repr(content_type_bytes).lstrip('b')[1:-1]
 return "<{} {} '{:.40s}' {}>".format(
 reflect.qual(self.__class__),
 self.original.code,
 content_type,
 size,
)

[docs] def collect(self, collector):
 """
 Incrementally collect the body of the response, per
 :func:`treq.collect()`.

 :param collector: A single argument callable that will be called
 with chunks of body data as it is received.

 :returns: A `Deferred` that fires when the entire body has been
 received.
 """
 return collect(self.original, collector)

[docs] def content(self):
 """
 Read the entire body all at once, per :func:`treq.content()`.

 :returns: A `Deferred` that fires with a `bytes` object when the entire
 body has been received.
 """
 return content(self.original)

[docs] def json(self, **kwargs):
 """
 Collect the response body as JSON per :func:`treq.json_content()`.

 :param kwargs: Any keyword arguments accepted by :py:func:`json.loads`

 :rtype: Deferred that fires with the decoded JSON when the entire body
 has been read.
 """
 return json_content(self.original, **kwargs)

[docs] def text(self, encoding='ISO-8859-1'):
 """
 Read the entire body all at once as text, per
 :func:`treq.text_content()`.

 :rtype: A `Deferred` that fires with a unicode string when the entire
 body has been received.
 """
 return text_content(self.original, encoding)

[docs] def history(self):
 """
 Get a list of all responses that (such as intermediate redirects),
 that ultimately ended in the current response. The responses are
 ordered chronologically.

 :returns: A `list` of :class:`~treq.response._Response` objects
 """
 response = self
 history = []

 while response.previousResponse is not None:
 history.append(_Response(response.previousResponse,
 self._cookiejar))
 response = response.previousResponse

 history.reverse()
 return history

[docs] def cookies(self):
 """
 Get a copy of this response's cookies.

 :rtype: :class:`requests.cookies.RequestsCookieJar`
 """
 jar = cookiejar_from_dict({})

 if self._cookiejar is not None:
 for cookie in self._cookiejar:
 jar.set_cookie(cookie)

 return jar

 Source code for treq.testing

-*- coding: utf-8 -*-
"""
In-memory version of treq for testing.
"""

from __future__ import absolute_import, division, print_function

from six import text_type, PY3

from contextlib import contextmanager
from functools import wraps

try:
 from twisted.internet.testing import MemoryReactorClock
except ImportError:
 from twisted.test.proto_helpers import MemoryReactorClock

from twisted.test import iosim

from twisted.internet.address import IPv4Address
from twisted.internet.defer import succeed
from twisted.internet.interfaces import ISSLTransport

from twisted.logger import Logger

from twisted.python.failure import Failure
from twisted.python.urlpath import URLPath

from twisted.internet.endpoints import TCP4ClientEndpoint
from twisted.web.client import Agent
from twisted.web.error import SchemeNotSupported
from twisted.web.iweb import IAgent, IAgentEndpointFactory, IBodyProducer
from twisted.web.resource import Resource
from twisted.web.server import Site

from zope.interface import directlyProvides, implementer

import treq
from treq.client import HTTPClient
import attr

@implementer(IAgentEndpointFactory)
@attr.s
class _EndpointFactory(object):
 """
 An endpoint factory used by :class:`RequestTraversalAgent`.

 :ivar reactor: The agent's reactor.
 :type reactor: :class:`MemoryReactorClock`
 """

 reactor = attr.ib()

 def endpointForURI(self, uri):
 """
 Create an endpoint that represents an in-memory connection to
 a URI.

 Note: This always creates a
 :class:`~twisted.internet.endpoints.TCP4ClientEndpoint` on the
 assumption :class:`RequestTraversalAgent` ignores everything
 about the endpoint but its port.

 :param uri: The URI to connect to.
 :type uri: :class:`~twisted.web.client.URI`

 :return: The endpoint.
 :rtype: An
 :class:`~twisted.internet.interfaces.IStreamClientEndpoint`
 provider.
 """

 if uri.scheme not in {b'http', b'https'}:
 raise SchemeNotSupported("Unsupported scheme: %r" % (uri.scheme,))
 return TCP4ClientEndpoint(self.reactor, "127.0.0.1", uri.port)

[docs]@implementer(IAgent)
class RequestTraversalAgent(object):
 """
 :obj:`~twisted.web.iweb.IAgent` implementation that issues an in-memory
 request rather than going out to a real network socket.
 """

 def __init__(self, rootResource):
 """
 :param rootResource: The Twisted `IResource` at the root of the
 resource tree.
 """
 self._memoryReactor = MemoryReactorClock()
 self._realAgent = Agent.usingEndpointFactory(
 reactor=self._memoryReactor,
 endpointFactory=_EndpointFactory(self._memoryReactor))
 self._rootResource = rootResource
 self._pumps = set()

[docs] def request(self, method, uri, headers=None, bodyProducer=None):
 """
 Implement IAgent.request.
 """
 # We want to use Agent to parse the HTTP response, so let's ask it to
 # make a request against our in-memory reactor.
 response = self._realAgent.request(method, uri, headers, bodyProducer)

 # If the request has already finished, just propagate the result. In
 # reality this would only happen in failure, but if the agent ever adds
 # a local cache this might be a success.
 already_called = []

 def check_already_called(r):
 already_called.append(r)
 return r
 response.addBoth(check_already_called)
 if already_called:
 return response

 # That will try to establish an HTTP connection with the reactor's
 # connectTCP method, and MemoryReactor will place Agent's factory into
 # the tcpClients list. Alternately, it will try to establish an HTTPS
 # connection with the reactor's connectSSL method, and MemoryReactor
 # will place it into the sslClients list. We'll extract that.
 if PY3:
 scheme = URLPath.fromBytes(uri).scheme
 else:
 scheme = URLPath.fromString(uri).scheme

 host, port, factory, timeout, bindAddress = (
 self._memoryReactor.tcpClients[-1])

 serverAddress = IPv4Address('TCP', '127.0.0.1', port)
 clientAddress = IPv4Address('TCP', '127.0.0.1', 31337)

 # Create the protocol and fake transport for the client and server,
 # using the factory that was passed to the MemoryReactor for the
 # client, and a Site around our rootResource for the server.
 serverFactory = Site(self._rootResource, reactor=self._memoryReactor)
 serverProtocol = serverFactory.buildProtocol(clientAddress)
 serverTransport = iosim.FakeTransport(
 serverProtocol, isServer=True,
 hostAddress=serverAddress, peerAddress=clientAddress)
 clientProtocol = factory.buildProtocol(None)
 clientTransport = iosim.FakeTransport(
 clientProtocol, isServer=False,
 hostAddress=clientAddress, peerAddress=serverAddress)

 if scheme == b"https":
 # Provide ISSLTransport on both transports, so everyone knows that
 # this is HTTPS.
 directlyProvides(serverTransport, ISSLTransport)
 directlyProvides(clientTransport, ISSLTransport)

 # Make a pump for wiring the client and server together.
 pump = iosim.connect(
 serverProtocol, serverTransport, clientProtocol, clientTransport)
 self._pumps.add(pump)

 return response

[docs] def flush(self):
 """
 Flush all data between pending client/server pairs.

 This is only necessary if a :obj:`Resource` under test returns
 :obj:`NOT_DONE_YET` from its ``render`` method, making a response
 asynchronous. In that case, after each write from the server,
 :meth:`flush()` must be called so the client can see it.
 """
 old_pumps = self._pumps
 new_pumps = self._pumps = set()
 for p in old_pumps:
 p.flush()
 if p.clientIO.disconnected and p.serverIO.disconnected:
 continue
 new_pumps.add(p)

@implementer(IBodyProducer)
class _SynchronousProducer(object):
 """
 A partial implementation of an :obj:`IBodyProducer` which produces its
 entire payload immediately. There is no way to access to an instance of
 this object from :obj:`RequestTraversalAgent` or :obj:`StubTreq`, or even a
 :obj:`Resource: passed to :obj:`StubTreq`.

 This does not implement the :func:`IBodyProducer.stopProducing` method,
 because that is very difficult to trigger. (The request from
 `RequestTraversalAgent` would have to be canceled while it is still in the
 transmitting state), and the intent is to use `RequestTraversalAgent` to
 make synchronous requests.
 """

 def __init__(self, body):
 """
 Create a synchronous producer with some bytes.
 """
 self.body = body
 msg = ("StubTreq currently only supports url-encodable types, bytes, "
 "or unicode as data.")
 assert isinstance(body, (bytes, text_type)), msg
 if isinstance(body, text_type):
 self.body = body.encode('utf-8')
 self.length = len(body)

 def startProducing(self, consumer):
 """
 Immediately produce all data.
 """
 consumer.write(self.body)
 return succeed(None)

def _reject_files(f):
 """
 Decorator that rejects the 'files' keyword argument to the request
 functions, because that is not handled by this yet.
 """
 @wraps(f)
 def wrapper(*args, **kwargs):
 if 'files' in kwargs:
 raise AssertionError("StubTreq cannot handle files.")
 return f(*args, **kwargs)
 return wrapper

class StubTreq(object):
 """
 A fake version of the treq module that can be used for testing that
 provides all the function calls exposed in :obj:`treq.__all__`.
 """
 def __init__(self, resource):
 """
 Construct a client, and pass through client methods and/or
 treq.content functions.

 :param resource: A :obj:`Resource` object that provides the fake
 responses
 """
 _agent = RequestTraversalAgent(resource)
 _client = HTTPClient(agent=_agent,
 data_to_body_producer=_SynchronousProducer)
 for function_name in treq.__all__:
 function = getattr(_client, function_name, None)
 if function is None:
 function = getattr(treq, function_name)
 else:
 function = _reject_files(function)

 setattr(self, function_name, function)
 self.flush = _agent.flush

[docs]class StringStubbingResource(Resource):
 """
 A resource that takes a callable with 5 parameters
 ``(method, url, params, headers, data)`` and returns
 ``(code, headers, body)``.

 The resource uses the callable to return a real response as a result of a
 request.

 The parameters for the callable are:

 - ``method``, the HTTP method as `bytes`.
 - ``url``, the full URL of the request as text.
 - ``params``, a dictionary of query parameters mapping query keys
 lists of values (sorted alphabetically).
 - ``headers``, a dictionary of headers mapping header keys to
 a list of header values (sorted alphabetically).
 - ``data``, the request body as `bytes`.

 The callable must return a ``tuple`` of (code, headers, body) where the
 code is the HTTP status code, the headers is a dictionary of bytes (unlike
 the `headers` parameter, which is a dictionary of lists), and body is
 a string that will be returned as the response body.

 If there is a stubbing error, the return value is undefined (if an
 exception is raised, :obj:`~twisted.web.resource.Resource` will just eat it
 and return 500 in its place). The callable, or whomever creates the
 callable, should have a way to handle error reporting.
 """
 isLeaf = True

 def __init__(self, get_response_for):
 """
 See :class:`StringStubbingResource`.
 """
 Resource.__init__(self)
 self._get_response_for = get_response_for

[docs] def render(self, request):
 """
 Produce a response according to the stubs provided.
 """
 params = request.args
 headers = {}
 for k, v in request.requestHeaders.getAllRawHeaders():
 headers[k] = v

 for dictionary in (params, headers):
 for k in dictionary:
 dictionary[k] = sorted(dictionary[k])

 # The incoming request does not have the absoluteURI property, because
 # an incoming request is a IRequest, not an IClientRequest, so it
 # the absolute URI needs to be synthesized.

 # But request.URLPath() only returns the scheme and hostname, because
 # that is the URL for this resource (because this resource handles
 # everything from the root on down).

 # So we need to add the request.path (not request.uri, which includes
 # the query parameters)
 absoluteURI = str(request.URLPath().click(request.path))

 status_code, headers, body = self._get_response_for(
 request.method, absoluteURI, params, headers,
 request.content.read())

 request.setResponseCode(status_code)
 for k, v in headers.items():
 request.setHeader(k, v)

 return body

def _maybeEncode(someStr):
 """
 Encode `someStr` to ASCII if required.
 """
 if isinstance(someStr, text_type):
 return someStr.encode('ascii')
 return someStr

def _maybeEncodeHeaders(headers):
 """ Convert a headers mapping to its bytes-encoded form. """
 return {_maybeEncode(k).lower(): [_maybeEncode(v) for v in vs]
 for k, vs in headers.items()}

[docs]class HasHeaders(object):
 """
 Since Twisted adds headers to a request, such as the host and the content
 length, it's necessary to test whether request headers CONTAIN the expected
 headers (the ones that are not automatically added by Twisted).

 This wraps a set of headers, and can be used in an equality test against
 a superset if the provided headers. The headers keys are lowercased, and
 keys and values are compared in their bytes-encoded forms.

 Headers should be provided as a mapping from strings or bytes to a list of
 strings or bytes.
 """
 def __init__(self, headers):
 self._headers = _maybeEncodeHeaders(headers)

 def __repr__(self):
 return "HasHeaders({0})".format(repr(self._headers))

 def __eq__(self, other_headers):
 compare_to = _maybeEncodeHeaders(other_headers)

 return (set(self._headers.keys()).issubset(set(compare_to.keys())) and
 all([set(v).issubset(set(compare_to[k]))
 for k, v in self._headers.items()]))

 def __ne__(self, other_headers):
 return not self.__eq__(other_headers)

[docs]class RequestSequence(object):
 """
 For an example usage, see :meth:`RequestSequence.consume`.

 Takes a sequence of::

 [((method, url, params, headers, data), (code, headers, body)),
 ...]

 Expects the requests to arrive in sequence order. If there are no more
 responses, or the request's parameters do not match the next item's
 expected request parameters, calls `sync_failure_reporter` or
 `async_failure_reporter`.

 For the expected request tuples:

 - ``method`` should be :class:`bytes` normalized to lowercase.
 - ``url`` should be a `str` normalized as per the `transformations in that
 (usually) preserve semantics
 <https://en.wikipedia.org/wiki/URL_normalization>`_. A URL to
 `http://something-that-looks-like-a-directory` would be normalized to
 `http://something-that-looks-like-a-directory/`
 and a URL to `http://something-that-looks-like-a-page/page.html`
 remains unchanged.
 - ``params`` is a dictionary mapping :class:`bytes` to :class:`list` of
 :class:`bytes`.
 - ``headers`` is a dictionary mapping :class:`bytes` to :class:`list` of
 :class:`bytes` -- note that :class:`twisted.web.client.Agent` may add its
 own headers which are not guaranteed to be present (for instance,
 `user-agent` or `content-length`), so it's better to use some kind of
 matcher like :class:`HasHeaders`.
 - ``data`` is a :class:`bytes`.

 For the response tuples:

 - ``code`` is an integer representing the HTTP status code to return.
 - ``headers`` is a dictionary mapping :class:`bytes` to :class:`bytes` or
 :class:`str`. Note that the value is *not* a list.
 - ``body`` is a :class:`bytes`.

 :ivar list sequence: A sequence of (request tuple, response tuple)
 two-tuples, as described above.
 :ivar async_failure_reporter: An optional callable that takes
 a :class:`str` message indicating a failure. It's asynchronous because
 it cannot just raise an exception—if it does, :meth:`Resource.render
 <twisted.web.resource.Resource.render>` will just convert that into
 a 500 response, and there will be no other failure reporting mechanism.

 When the `async_failure_reporter` parameter is not passed, async failures
 will be reported via a :class:`twisted.logger.Logger` instance, which
 Trial's test case classes (:class:`twisted.trial.unittest.TestCase` and
 :class:`~twisted.trial.unittest.SynchronousTestCase`) will translate into
 a test failure.

 .. note::

 Some versions of
 :class:`twisted.trial.unittest.SynchronousTestCase` report
 logged errors on the wrong test: see `Twisted #9267
 <https://twistedmatrix.com/trac/ticket/9267>`_.

 .. TODO Update the above note to say what version of
 SynchronousTestCase is fixed once Twisted >17.5.0 is released.

 When not subclassing Trial's classes you must pass `async_failure_reporter`
 and implement equivalent behavior or errors will pass silently. For
 example::

 async_failures = []
 sequence_stubs = RequestSequence([...], async_failures.append)
 stub_treq = StubTreq(StringStubbingResource(sequence_stubs))
 with sequence_stubs.consume(self.fail): # self = unittest.TestCase
 stub_treq.get('http://fakeurl.com')

 self.assertEqual([], async_failures)
 """
 _log = Logger()

 def __init__(self, sequence, async_failure_reporter=None):
 self._sequence = sequence
 self._async_reporter = async_failure_reporter or self._log_async_error

 def _log_async_error(self, message):
 """
 The default async failure reporter—see `async_failure_reporter`. Logs
 a failure which wraps an :ex:`AssertionError`.

 :param str message: Failure message
 """
 # Passing message twice may look redundant, but Trial only preserves
 # the Failure, not the log message.
 self._log.failure(
 "RequestSequence async error: {message}",
 message=message,
 failure=Failure(AssertionError(message)),
)

[docs] def consumed(self):
 """
 :return: `bool` representing whether the entire sequence has been
 consumed. This is useful in tests to assert that the expected
 requests have all been made.
 """
 return len(self._sequence) == 0

[docs] @contextmanager
 def consume(self, sync_failure_reporter):
 """
 Usage::

 sequence_stubs = RequestSequence([...])
 stub_treq = StubTreq(StringStubbingResource(sequence_stubs))
 # self = twisted.trial.unittest.SynchronousTestCase
 with sequence_stubs.consume(self.fail):
 stub_treq.get('http://fakeurl.com')
 stub_treq.get('http://another-fake-url.com')

 If there are still remaining expected requests to be made in the
 sequence, fails the provided test case.

 :param sync_failure_reporter: A callable that takes a single message
 reporting failures. This can just raise an exception - it does
 not need to be asynchronous, since the exception would not get
 raised within a Resource.

 :return: a context manager that can be used to ensure all expected
 requests have been made.
 """
 yield
 if not self.consumed():
 sync_failure_reporter("\n".join(
 ["Not all expected requests were made. Still expecting:"] +
 ["- {0}(url={1}, params={2}, headers={3}, data={4})".format(
 *expected) for expected, _ in self._sequence]))

 def __call__(self, method, url, params, headers, data):
 """
 :return: the next response in the sequence, provided that the
 parameters match the next in the sequence.
 """
 if len(self._sequence) == 0:
 self._async_reporter(
 "No more requests expected, but request {0!r} made.".format(
 (method, url, params, headers, data)))
 return (500, {}, b"StubbingError")

 expected, response = self._sequence[0]
 e_method, e_url, e_params, e_headers, e_data = expected

 checks = [
 (e_method == method.lower(), "method"),
 (e_url == url, "url"),
 (e_params == params, 'parameters'),
 (e_headers == headers, "headers"),
 (e_data == data, "data")
]
 mismatches = [param for success, param in checks if not success]
 if mismatches:
 self._async_reporter(
 "\nExpected the next request to be: {0!r}"
 "\nGot request : {1!r}\n"
 "\nMismatches: {2!r}"
 .format(expected, (method, url, params, headers, data),
 mismatches))
 return (500, {}, b"StubbingError")

 self._sequence = self._sequence[1:]

 return response

 Source code for twisted.python.components

-*- test-case-name: twisted.python.test.test_components -*-
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

"""
Component architecture for Twisted, based on Zope3 components.

Using the Zope3 API directly is strongly recommended. Everything
you need is in the top-level of the zope.interface package, e.g.::

 from zope.interface import Interface, implementer

 class IFoo(Interface):
 pass

 @implementer(IFoo)
 class Foo:
 pass

 print(IFoo.implementedBy(Foo)) # True
 print(IFoo.providedBy(Foo())) # True

L{twisted.python.components.registerAdapter} from this module may be used to
add to Twisted's global adapter registry.

L{twisted.python.components.proxyForInterface} is a factory for classes
which allow access to only the parts of another class defined by a specified
interface.
"""

from __future__ import division, absolute_import, print_function

zope3 imports
from zope.interface import interface, declarations
from zope.interface.adapter import AdapterRegistry

twisted imports
from twisted.python.compat import NativeStringIO
from twisted.python import reflect
from twisted.python._oldstyle import _oldStyle

Twisted's global adapter registry
globalRegistry = AdapterRegistry()

Attribute that registerAdapter looks at. Is this supposed to be public?
ALLOW_DUPLICATES = 0

def registerAdapter(adapterFactory, origInterface, *interfaceClasses):
 """Register an adapter class.

 An adapter class is expected to implement the given interface, by
 adapting instances implementing 'origInterface'. An adapter class's
 __init__ method should accept one parameter, an instance implementing
 'origInterface'.
 """
 self = globalRegistry
 assert interfaceClasses, "You need to pass an Interface"
 global ALLOW_DUPLICATES

 # deal with class->interface adapters:
 if not isinstance(origInterface, interface.InterfaceClass):
 origInterface = declarations.implementedBy(origInterface)

 for interfaceClass in interfaceClasses:
 factory = self.registered([origInterface], interfaceClass)
 if factory is not None and not ALLOW_DUPLICATES:
 raise ValueError("an adapter (%s) was already registered." % (factory,))
 for interfaceClass in interfaceClasses:
 self.register([origInterface], interfaceClass, '', adapterFactory)

def getAdapterFactory(fromInterface, toInterface, default):
 """Return registered adapter for a given class and interface.

 Note that is tied to the *Twisted* global registry, and will
 thus not find adapters registered elsewhere.
 """
 self = globalRegistry
 if not isinstance(fromInterface, interface.InterfaceClass):
 fromInterface = declarations.implementedBy(fromInterface)
 factory = self.lookup1(fromInterface, toInterface)
 if factory is None:
 factory = default
 return factory

def _addHook(registry):
 """
 Add an adapter hook which will attempt to look up adapters in the given
 registry.

 @type registry: L{zope.interface.adapter.AdapterRegistry}

 @return: The hook which was added, for later use with L{_removeHook}.
 """
 lookup = registry.lookup1
 def _hook(iface, ob):
 factory = lookup(declarations.providedBy(ob), iface)
 if factory is None:
 return None
 else:
 return factory(ob)
 interface.adapter_hooks.append(_hook)
 return _hook

def _removeHook(hook):
 """
 Remove a previously added adapter hook.

 @param hook: An object previously returned by a call to L{_addHook}. This
 will be removed from the list of adapter hooks.
 """
 interface.adapter_hooks.remove(hook)

add global adapter lookup hook for our newly created registry
_addHook(globalRegistry)

def getRegistry():
 """Returns the Twisted global
 C{zope.interface.adapter.AdapterRegistry} instance.
 """
 return globalRegistry

FIXME: deprecate attribute somehow?
CannotAdapt = TypeError

@_oldStyle
class Adapter:
 """I am the default implementation of an Adapter for some interface.

 This docstring contains a limerick, by popular demand::

 Subclassing made Zope and TR
 much harder to work with by far.
 So before you inherit,
 be sure to declare it
 Adapter, not PyObject*

 @cvar temporaryAdapter: If this is True, the adapter will not be
 persisted on the Componentized.
 @cvar multiComponent: If this adapter is persistent, should it be
 automatically registered for all appropriate interfaces.
 """

 # These attributes are used with Componentized.

 temporaryAdapter = 0
 multiComponent = 1

 def __init__(self, original):
 """Set my 'original' attribute to be the object I am adapting.
 """
 self.original = original

 def __conform__(self, interface):
 """
 I forward __conform__ to self.original if it has it, otherwise I
 simply return None.
 """
 if hasattr(self.original, "__conform__"):
 return self.original.__conform__(interface)
 return None

 def isuper(self, iface, adapter):
 """
 Forward isuper to self.original
 """
 return self.original.isuper(iface, adapter)

@_oldStyle
class Componentized:
 """I am a mixin to allow you to be adapted in various ways persistently.

 I define a list of persistent adapters. This is to allow adapter classes
 to store system-specific state, and initialized on demand. The
 getComponent method implements this. You must also register adapters for
 this class for the interfaces that you wish to pass to getComponent.

 Many other classes and utilities listed here are present in Zope3; this one
 is specific to Twisted.
 """

 persistenceVersion = 1

 def __init__(self):
 self._adapterCache = {}

 def locateAdapterClass(self, klass, interfaceClass, default):
 return getAdapterFactory(klass, interfaceClass, default)

 def setAdapter(self, interfaceClass, adapterClass):
 """
 Cache a provider for the given interface, by adapting C{self} using
 the given adapter class.
 """
 self.setComponent(interfaceClass, adapterClass(self))

 def addAdapter(self, adapterClass, ignoreClass=0):
 """Utility method that calls addComponent. I take an adapter class and
 instantiate it with myself as the first argument.

 @return: The adapter instantiated.
 """
 adapt = adapterClass(self)
 self.addComponent(adapt, ignoreClass)
 return adapt

 def setComponent(self, interfaceClass, component):
 """
 Cache a provider of the given interface.
 """
 self._adapterCache[reflect.qual(interfaceClass)] = component

 def addComponent(self, component, ignoreClass=0):
 """
 Add a component to me, for all appropriate interfaces.

 In order to determine which interfaces are appropriate, the component's
 provided interfaces will be scanned.

 If the argument 'ignoreClass' is True, then all interfaces are
 considered appropriate.

 Otherwise, an 'appropriate' interface is one for which its class has
 been registered as an adapter for my class according to the rules of
 getComponent.
 """
 for iface in declarations.providedBy(component):
 if (ignoreClass or
 (self.locateAdapterClass(self.__class__, iface, None)
 == component.__class__)):
 self._adapterCache[reflect.qual(iface)] = component

 def unsetComponent(self, interfaceClass):
 """Remove my component specified by the given interface class."""
 del self._adapterCache[reflect.qual(interfaceClass)]

 def removeComponent(self, component):
 """
 Remove the given component from me entirely, for all interfaces for which
 it has been registered.

 @return: a list of the interfaces that were removed.
 """
 l = []
 for k, v in list(self._adapterCache.items()):
 if v is component:
 del self._adapterCache[k]
 l.append(reflect.namedObject(k))
 return l

 def getComponent(self, interface, default=None):
 """Create or retrieve an adapter for the given interface.

 If such an adapter has already been created, retrieve it from the cache
 that this instance keeps of all its adapters. Adapters created through
 this mechanism may safely store system-specific state.

 If you want to register an adapter that will be created through
 getComponent, but you don't require (or don't want) your adapter to be
 cached and kept alive for the lifetime of this Componentized object,
 set the attribute 'temporaryAdapter' to True on your adapter class.

 If you want to automatically register an adapter for all appropriate
 interfaces (with addComponent), set the attribute 'multiComponent' to
 True on your adapter class.
 """
 k = reflect.qual(interface)
 if k in self._adapterCache:
 return self._adapterCache[k]
 else:
 adapter = interface.__adapt__(self)
 if adapter is not None and not (
 hasattr(adapter, "temporaryAdapter") and
 adapter.temporaryAdapter):
 self._adapterCache[k] = adapter
 if (hasattr(adapter, "multiComponent") and
 adapter.multiComponent):
 self.addComponent(adapter)
 if adapter is None:
 return default
 return adapter

 def __conform__(self, interface):
 return self.getComponent(interface)

class ReprableComponentized(Componentized):
 def __init__(self):
 Componentized.__init__(self)

 def __repr__(self):
 from pprint import pprint
 sio = NativeStringIO()
 pprint(self._adapterCache, sio)
 return sio.getvalue()

def proxyForInterface(iface, originalAttribute='original'):
 """
 Create a class which proxies all method calls which adhere to an interface
 to another provider of that interface.

 This function is intended for creating specialized proxies. The typical way
 to use it is by subclassing the result::

 class MySpecializedProxy(proxyForInterface(IFoo)):
 def someInterfaceMethod(self, arg):
 if arg == 3:
 return 3
 return self.original.someInterfaceMethod(arg)

 @param iface: The Interface to which the resulting object will conform, and
 which the wrapped object must provide.

 @param originalAttribute: name of the attribute used to save the original
 object in the resulting class. Default to C{original}.
 @type originalAttribute: C{str}

 @return: A class whose constructor takes the original object as its only
 argument. Constructing the class creates the proxy.
 """
 def __init__(self, original):
 setattr(self, originalAttribute, original)
 contents = {"__init__": __init__}
 for name in iface:
 contents[name] = _ProxyDescriptor(name, originalAttribute)
 proxy = type("(Proxy for %s)"
 % (reflect.qual(iface),), (object,), contents)
 declarations.classImplements(proxy, iface)
 return proxy

class _ProxiedClassMethod(object):
 """
 A proxied class method.

 @ivar methodName: the name of the method which this should invoke when
 called.
 @type methodName: L{str}

 @ivar __name__: The name of the method being proxied (the same as
 C{methodName}).
 @type __name__: L{str}

 @ivar originalAttribute: name of the attribute of the proxy where the
 original object is stored.
 @type originalAttribute: L{str}
 """
 def __init__(self, methodName, originalAttribute):
 self.methodName = self.__name__ = methodName
 self.originalAttribute = originalAttribute

 def __call__(self, oself, *args, **kw):
 """
 Invoke the specified L{methodName} method of the C{original} attribute
 for proxyForInterface.

 @param oself: an instance of a L{proxyForInterface} object.

 @return: the result of the underlying method.
 """
 original = getattr(oself, self.originalAttribute)
 actualMethod = getattr(original, self.methodName)
 return actualMethod(*args, **kw)

class _ProxyDescriptor(object):
 """
 A descriptor which will proxy attribute access, mutation, and
 deletion to the L{_ProxyDescriptor.originalAttribute} of the
 object it is being accessed from.

 @ivar attributeName: the name of the attribute which this descriptor will
 retrieve from instances' C{original} attribute.
 @type attributeName: C{str}

 @ivar originalAttribute: name of the attribute of the proxy where the
 original object is stored.
 @type originalAttribute: C{str}
 """
 def __init__(self, attributeName, originalAttribute):
 self.attributeName = attributeName
 self.originalAttribute = originalAttribute

 def __get__(self, oself, type=None):
 """
 Retrieve the C{self.attributeName} property from I{oself}.
 """
 if oself is None:
 return _ProxiedClassMethod(self.attributeName,
 self.originalAttribute)
 original = getattr(oself, self.originalAttribute)
 return getattr(original, self.attributeName)

 def __set__(self, oself, value):
 """
 Set the C{self.attributeName} property of I{oself}.
 """
 original = getattr(oself, self.originalAttribute)
 setattr(original, self.attributeName, value)

 def __delete__(self, oself):
 """
 Delete the C{self.attributeName} property of I{oself}.
 """
 original = getattr(oself, self.originalAttribute)
 delattr(original, self.attributeName)

__all__ = [
 "registerAdapter", "getAdapterFactory",
 "Adapter", "Componentized", "ReprableComponentized", "getRegistry",
 "proxyForInterface",
]

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 treq: High-level Twisted HTTP Client API

 		
 Use Cases

 		
 Handling Streaming Responses

 		
 URLs, URIs, and Hyperlinks

 		
 Query Parameters

 		
 JSON

 		
 Auth

 		
 Redirects

 		
 Cookies

 		
 Customizing the Twisted Agent

 		
 Testing Helpers

 		
 Writing tests for HTTP clients

 		
 Loosely matching the request

 		
 Writing tests for Twisted Web resources

 		
 API Reference

 		
 Making Requests

 		
 Accessing Content

 		
 The HTTP Client

 		
 Augmented Response Objects

 		
 Authentication

 		
 Test Helpers

 		
 StubTreq Objects

 		
 RequestTraversalAgent Objects

 		
 RequestSequence Objects

 		
 StringStubbingResource Objects

 		
 HasHeaders Objects

 		
 MultiPartProducer Objects

 		
 Changelog

 		
 21.1.0 (2021-01-14)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 20.9.0 (2020-09-27)

 		
 Features

 		
 Improved Documentation

 		
 20.4.1 (2020-04-16)

 		
 Bugfixes

 		
 20.4.0 (2020-04-16)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 20.3.0 (2020-03-15)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Misc

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

